public static void testICDE() { // Number of total operations int numberOfTests = 5; // Length of the p, note that n=p.q int lengthp = 512; Paillier esystem = new Paillier(); Random rd = new Random(); PaillierPrivateKey key = KeyGen.PaillierKey(lengthp, 122333356); esystem.setDecryptEncrypt(key); // let's test our algorithm by encrypting and decrypting few instances long start = System.currentTimeMillis(); for (int i = 0; i < numberOfTests; i++) { BigInteger m1 = BigInteger.valueOf(Math.abs(rd.nextLong())); BigInteger m2 = BigInteger.valueOf(Math.abs(rd.nextLong())); BigInteger c1 = esystem.encrypt(m1); BigInteger c2 = esystem.encrypt(m2); BigInteger c3 = esystem.multiply(c1, m2); c1 = esystem.add(c1, c2); c1 = esystem.add(c1, c3); esystem.decrypt(c1); } long stop = System.currentTimeMillis(); System.out.println( "Running time per comparison in milliseconds: " + ((stop - start) / numberOfTests)); }
/** This main method basically tests the different features of the Paillier encryption */ public static void test() { Random rd = new Random(); long num = 0; long num1 = 0; BigInteger m = null; BigInteger c = null; int numberOfTests = 10; int j = 0; BigInteger decryption = null; Paillier esystem = new Paillier(); PaillierPrivateKey key = KeyGen.PaillierKey(512, 122333356); esystem.setDecryptEncrypt(key); // let's test our algorithm by encrypting and decrypting a few instances for (int i = 0; i < numberOfTests; i++) { num = Math.abs(rd.nextLong()); m = BigInteger.valueOf(num); System.out.println("number chosen : " + m.toString()); c = esystem.encrypt(m); System.out.println("encrypted value: " + c.toString()); decryption = esystem.decrypt(c); System.out.println("decrypted value: " + decryption.toString()); if (m.compareTo(decryption) == 0) { System.out.println("OK"); j++; } else System.out.println("PROBLEM"); } System.out.println( "out of " + (new Integer(numberOfTests)).toString() + "random encryption,# many of " + (new Integer(j)).toString() + " has passed"); // Let us check the commutative properties of the paillier encryption System.out.println("Checking the additive properteries of the Paillier encryption"); // Obviously 1+0=1 System.out.println( "1+0=" + (esystem.decrypt(esystem.add(esystem.encryptone(), esystem.encryptzero()))) .toString()); // 1+1=2 System.out.println( "1+1=" + (esystem.decrypt( esystem.add(esystem.encrypt(BigInteger.ONE), esystem.encrypt(BigInteger.ONE)))) .toString()); // 1+1+1=3 System.out.println( "1+1+1=" + (esystem.decrypt( esystem.add( esystem.add( esystem.encrypt(BigInteger.ONE), esystem.encrypt(BigInteger.ONE)), esystem.encrypt(BigInteger.ONE)))) .toString()); // 0+0=0 System.out.println( "0+0=" + (esystem.decrypt( esystem.add( esystem.encrypt(BigInteger.ZERO), esystem.encrypt(BigInteger.ZERO)))) .toString()); // 1+-1=0 System.out.println( "1+-1=" + (esystem.decrypt( esystem.add( esystem.encrypt(BigInteger.valueOf(-1).mod(key.getN())), esystem.encrypt(BigInteger.ONE)))) .toString()); do { num = rd.nextLong(); } while (key.inModN(BigInteger.valueOf(num)) == false); do { num1 = rd.nextLong(); } while (key.inModN(BigInteger.valueOf(num1)) == false); BigInteger numplusnum1 = BigInteger.valueOf(num).add(BigInteger.valueOf(num1)); BigInteger summodnsquare = numplusnum1.mod(key.getN()); // D(E(num)+E(num1))=num+num1 System.out.println(numplusnum1.toString()); System.out.println( summodnsquare.toString() + "=\n" + esystem .decrypt( esystem.add( esystem.encrypt(BigInteger.valueOf(num)), esystem.encrypt(BigInteger.valueOf(num1)))) .toString()); // Let us check the multiplicative properties System.out.println("Checking the multiplicative properties"); // D(multiply(E(2),3))=6 System.out.println( "6=" + esystem.decrypt( esystem.multiply( esystem.add(esystem.encrypt(BigInteger.ONE), esystem.encrypt(BigInteger.ONE)), 3))); }