public static double dnbinom_mu(double x, double size, double mu, boolean give_log) { /* originally, just set prob := size / (size + mu) and called dbinom_raw(), * but that suffers from cancellation when mu << size */ double ans, p; if (DoubleVector.isNaN(x) || DoubleVector.isNaN(size) || DoubleVector.isNaN(mu)) { return x + size + mu; } if (mu < 0 || size < 0) { return DoubleVector.NaN; } // R_D_nonint_check(x); if (SignRank.R_D_nonint(x, true, give_log)) { // MATHLIB_WARNING("non-integer x = %f", x); // How to warn?? return SignRank.R_D__0(true, give_log); } if (x < 0 || !DoubleVector.isFinite(x)) { return SignRank.R_D__0(true, give_log); } x = SignRank.R_D_forceint(x); if (x == 0) /* be accerate, both for n << mu, and n >> mu :*/ { return SignRank.R_D_exp( size * (size < mu ? Math.log(size / (size + mu)) : Math.log1p(-mu / (size + mu))), true, give_log); } if (x < 1e-10 * size) { /* don't use dbinom_raw() but MM's formula: */ /* FIXME --- 1e-8 shows problem; rather use algdiv() from ./toms708.c */ return SignRank.R_D_exp( x * Math.log(size * mu / (size + mu)) - mu - org.apache.commons.math.special.Gamma.logGamma(x + 1) + Math.log1p(x * (x - 1) / (2 * size)), true, give_log); } /* else: no unnecessary cancellation inside dbinom_raw, when * x_ = size and n_ = x+size are so close that n_ - x_ loses accuracy */ ans = dbinom_raw(size, x + size, size / (size + mu), mu / (size + mu), give_log); p = ((double) size) / (size + x); return ((give_log) ? Math.log(p) + ans : p * ans); }
/* * bd0.c */ public static double bd0(double x, double np) { double ej, s, s1, v; int j; if (!DoubleVector.isFinite(x) || !DoubleVector.isFinite(np) || np == 0.0) { return DoubleVector.NaN; } if (Math.abs(x - np) < 0.1 * (x + np)) { v = (x - np) / (x + np); s = (x - np) * v; /* s using v -- change by MM */ ej = 2 * x * v; v = v * v; for (j = 1; ; j++) { /* Taylor series */ ej *= v; s1 = s + ej / ((j << 1) + 1); if (s1 == s) /* last term was effectively 0 */ { return (s1); } s = s1; } } /* else: | x - np | is not too small */ return (x * Math.log(x / np) + np - x); }
public static double qnbeta( double p, double a, double b, double ncp, boolean lower_tail, boolean log_p) { final double accu = 1e-15; final double Eps = 1e-14; /* must be > accu */ double ux, lx, nx, pp; if (DoubleVector.isNaN(p) || DoubleVector.isNaN(a) || DoubleVector.isNaN(b) || DoubleVector.isNaN(ncp)) { return p + a + b + ncp; } if (!DoubleVector.isFinite(a)) { return DoubleVector.NaN; } if (ncp < 0. || a <= 0. || b <= 0.) { return DoubleVector.NaN; } // R_Q_P01_boundaries(p, 0, 1); if ((log_p && p > 0) || (!log_p && (p < 0 || p > 1))) { return DoubleVector.NaN; } if (p == SignRank.R_DT_0(lower_tail, log_p)) { return 0.0; } if (p == SignRank.R_DT_1(lower_tail, log_p)) { return 1.0; } // end of R_Q_P01_boundaries p = Normal.R_DT_qIv(p, log_p ? 1.0 : 0.0, lower_tail ? 1.0 : 0.0); /* Invert pnbeta(.) : * 1. finding an upper and lower bound */ if (p > 1 - SignRank.DBL_EPSILON) { return 1.0; } pp = Math.min(1 - SignRank.DBL_EPSILON, p * (1 + Eps)); for (ux = 0.5; ux < 1 - SignRank.DBL_EPSILON && pnbeta(ux, a, b, ncp, true, false) < pp; ux = 0.5 * (1 + ux)) ; pp = p * (1 - Eps); for (lx = 0.5; lx > Double.MIN_VALUE && pnbeta(lx, a, b, ncp, true, false) > pp; lx *= 0.5) ; /* 2. interval (lx,ux) halving : */ do { nx = 0.5 * (lx + ux); if (pnbeta(nx, a, b, ncp, true, false) > p) { ux = nx; } else { lx = nx; } } while ((ux - lx) / nx > accu); return 0.5 * (ux + lx); }
@Test public void invokeMethod() throws ScriptException, NoSuchMethodException { Object obj = engine.eval("list(execute=sqrt)"); DoubleVector result = (DoubleVector) invocableEngine.invokeMethod(obj, "execute", 16); assertThat(result.length(), equalTo(1)); assertThat(result.get(0), equalTo(4d)); }
@Test public void invokeFunction() throws ScriptException, NoSuchMethodException { engine.eval("f <- function(x) sqrt(x)"); DoubleVector result = (DoubleVector) invocableEngine.invokeFunction("f", 4); assertThat(result.length(), equalTo(1)); assertThat(result.get(0), equalTo(2d)); }
@Primitive public static double pnbeta( double x, double a, double b, double ncp, boolean lower_tail, boolean log_p) { if (DoubleVector.isNaN(x) || DoubleVector.isNaN(a) || DoubleVector.isNaN(b) || DoubleVector.isNaN(ncp)) { return x + a + b + ncp; } // R_P_bounds_01(x, 0., 1.); if (x <= 0.0) { return SignRank.R_DT_0(lower_tail, log_p); } if (x >= 1.0) { return SignRank.R_DT_1(lower_tail, log_p); } return pnbeta2(x, 1 - x, a, b, ncp, lower_tail, log_p); }
public static double pnbinom_mu( double x, double size, double mu, boolean lower_tail, boolean log_p) { if (DoubleVector.isNaN(x) || DoubleVector.isNaN(size) || DoubleVector.isNaN(mu)) { return x + size + mu; } if (!DoubleVector.isFinite(size) || !DoubleVector.isFinite(mu)) { return DoubleVector.NaN; } if (size <= 0 || mu < 0) { return DoubleVector.NaN; } if (x < 0) { SignRank.R_DT_0(lower_tail, log_p); } if (!DoubleVector.isFinite(x)) { return SignRank.R_DT_1(lower_tail, log_p); } x = Math.floor(x + 1e-7); /* return * pbeta(pr, size, x + 1, lower_tail, log_p); pr = size/(size + mu), 1-pr = mu/(size+mu) * *= pbeta_raw(pr, size, x + 1, lower_tail, log_p) * x. pin qin *= bratio (pin, qin, x., 1-x., &w, &wc, &ierr, log_p), and return w or wc .. *= bratio (size, x+1, pr, 1-pr, &w, &wc, &ierr, log_p) */ { int[] ierr = new int[1]; double[] w = new double[1]; double[] wc = new double[1]; Utils.bratio(size, x + 1, size / (size + mu), mu / (size + mu), w, wc, ierr, log_p); return lower_tail ? w[0] : wc[0]; } }
public static double qnbinom( double p, double size, double prob, boolean lower_tail, boolean log_p) { double P, Q, mu, sigma, gamma, y; double[] z = new double[1]; if (DoubleVector.isNaN(p) || DoubleVector.isNaN(size) || DoubleVector.isNaN(prob)) { return p + size + prob; } if (prob <= 0 || prob > 1 || size <= 0) { return DoubleVector.NaN; } /* FIXME: size = 0 is well defined ! */ if (prob == 1) { return 0; } // R_Q_P01_boundaries(p, 0, ML_POSINF); // #define R_Q_P01_boundaries(p, _LEFT_, _RIGHT_) // This macro is defined in /src/nmath/dpq.h if (log_p) { if (p > 0) { return DoubleVector.NaN; } if (p == 0) { /* upper bound*/ return lower_tail ? Double.POSITIVE_INFINITY : 0; } if (p == Double.NEGATIVE_INFINITY) { return lower_tail ? 0 : Double.POSITIVE_INFINITY; } } else { /* !log_p */ if (p < 0 || p > 1) { return DoubleVector.NaN; } if (p == 0) { return lower_tail ? 0 : Double.POSITIVE_INFINITY; } if (p == 1) { return lower_tail ? Double.POSITIVE_INFINITY : 0; } } Q = 1.0 / prob; P = (1.0 - prob) * Q; mu = size * P; sigma = Math.sqrt(size * P * Q); gamma = (Q + P) / sigma; /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c -- * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */ if (!lower_tail || log_p) { // p = R_DT_qIv(p); /* need check again (cancellation!): */ p = Normal.R_DT_qIv(p, lower_tail ? 1.0 : 0.0, log_p ? 1.0 : 0.0); if (p == SignRank.R_DT_0(lower_tail, log_p)) { return 0; } if (p == SignRank.R_DT_1(lower_tail, log_p)) { return Double.POSITIVE_INFINITY; } } /* temporary hack --- FIXME --- */ if (p + 1.01 * SignRank.DBL_EPSILON >= 1.) { return Double.POSITIVE_INFINITY; } /* y := approx.value (Cornish-Fisher expansion) : */ z[0] = Distributions.qnorm(p, 0., 1., /*lower_tail*/ true, /*log_p*/ false); y = Math.floor(mu + sigma * (z[0] + gamma * (z[0] * z[0] - 1) / 6) + 0.5); z[0] = Distributions.pnbinom(y, (int) size, prob, /*lower_tail*/ true, /*log_p*/ false); /* fuzz to ensure left continuity: */ p *= 1 - 64 * SignRank.DBL_EPSILON; /* If the C-F value is not too large a simple search is OK */ if (y < 1e5) { return do_search(y, z, p, size, prob, 1); } /* Otherwise be a bit cleverer in the search */ { double incr = Math.floor(y * 0.001), oldincr; do { oldincr = incr; y = do_search(y, z, p, size, prob, incr); incr = Math.max(1, Math.floor(incr / 100)); } while (oldincr > 1 && incr > y * 1e-15); return y; } }
@Primitive public static double dnbeta(double x, double a, double b, double ncp, boolean give_log) { final double eps = 1.e-15; int kMax; double k, ncp2, dx2, d, D; double sum, term, p_k, q; /* They were LDOUBLE */ if (DoubleVector.isNaN(x) || DoubleVector.isNaN(a) || DoubleVector.isNaN(b) || DoubleVector.isNaN(ncp)) { return x + a + b + ncp; } if (ncp < 0 || a <= 0 || b <= 0) { return DoubleVector.NaN; } if (!DoubleVector.isFinite(a) || !DoubleVector.isFinite(b) || !DoubleVector.isFinite(ncp)) { return DoubleVector.NaN; } if (x < 0 || x > 1) { return (SignRank.R_D__0(true, give_log)); } if (ncp == 0) { return Distributions.dbeta(x, a, b, give_log); } /* New algorithm, starting with *largest* term : */ ncp2 = 0.5 * ncp; dx2 = ncp2 * x; d = (dx2 - a - 1) / 2; D = d * d + dx2 * (a + b) - a; if (D <= 0) { kMax = 0; } else { D = Math.ceil(d + Math.sqrt(D)); kMax = (D > 0) ? (int) D : 0; } /* The starting "middle term" --- first look at it's log scale: */ term = Distributions.dbeta(x, a + kMax, b, /* log = */ true); p_k = Poisson.dpois_raw(kMax, ncp2, true); if (x == 0. || !DoubleVector.isFinite(term) || !DoubleVector.isFinite(p_k)) /* if term = +Inf */ { return SignRank.R_D_exp(p_k + term, true, give_log); } /* Now if s_k := p_k * t_k {here = exp(p_k + term)} would underflow, * we should rather scale everything and re-scale at the end:*/ p_k += term; /* = log(p_k) + log(t_k) == log(s_k) -- used at end to rescale */ /* mid = 1 = the rescaled value, instead of mid = exp(p_k); */ /* Now sum from the inside out */ sum = term = 1. /* = mid term */; /* middle to the left */ k = kMax; while (k > 0 && term > sum * eps) { k--; q = /* 1 / r_k = */ (k + 1) * (k + a) / (k + a + b) / dx2; term *= q; sum += term; } /* middle to the right */ term = 1.; k = kMax; do { q = /* r_{old k} = */ dx2 * (k + a + b) / (k + a) / (k + 1); k++; term *= q; sum += term; } while (term > sum * eps); return SignRank.R_D_exp(p_k + Math.log(sum), true, give_log); }