public SaliencyResult saliencyalgorithmInterface(ImageObj imgobj, String method) { // TODO Auto-generated method stub float min = Float.MAX_VALUE; float max = Float.MIN_VALUE; String imgpath = imgobj.getSourcePath(); int k_num = imgobj.getK_num(); SaliencyResult result = new SaliencyResult(); Mat img = Highgui.imread(imgpath, Highgui.CV_LOAD_IMAGE_GRAYSCALE); Mat saliencyMap = new Mat(); saliencyMap.create(img.rows(), img.cols(), CvType.CV_16U); int HistGram[] = new int[256]; int Gray[] = new int[img.cols() * img.rows()]; int Dist[] = new int[256]; float DistMap[] = new float[img.rows() * img.cols()]; for (int row = 0; row < img.rows(); row++) { int CurIndex = row * img.cols(); for (int col = 0; col < img.cols(); col++) { HistGram[(int) (img.get(row, col)[0])]++; Gray[CurIndex] = (int) (img.get(row, col)[0]); CurIndex++; } } for (int Y = 0; Y < 256; Y++) { int Value = 0; for (int X = 0; X < 256; X++) Value += Math.abs(Y - X) * HistGram[X]; Dist[Y] = Value; } for (int row = 0; row < img.rows(); row++) { int CurIndex = row * img.cols(); for (int col = 0; col < img.cols(); col++) { DistMap[CurIndex] = Dist[Gray[CurIndex]]; if (DistMap[CurIndex] < min) min = DistMap[CurIndex]; if (DistMap[CurIndex] > max) max = DistMap[CurIndex]; CurIndex++; } } for (int row = 0; row < img.rows(); row++) { int CurIndex = row * img.cols(); for (int col = 0; col < img.cols(); col++) { saliencyMap.put(row, col, partTwo((DistMap[CurIndex] - min) / (max - min) * 255)); CurIndex++; } } new findMarkUtil(); int nums[] = null; if (method == "kmeans") { nums = findMarkUtil.findMarkUtil_kmeans(saliencyMap, k_num, 255, 0, 5); } else if (method == "random") { nums = findMarkUtil.findMarkUtil_random(saliencyMap, k_num, 255); } result.setK_num(k_num); result.setSource(imgpath); result.setResult(nums); result.setSaliency(saliencyMap); return result; }
private void prepareSpherify(Bitmap bitmap) { int insideCircleOutRadius; int topY, footY, withinHeight; if (!OpenCVLoader.initDebug()) { // Handle initialization error AppFunctions.showToast(activity.getApplicationContext(), "OpenGL initialization error!"); activity.finish(); } if (srcImage == null) { srcImage = new Mat(); srcImage.create(bitmap.getHeight(), bitmap.getWidth(), CvType.CV_8UC3); Bitmap myBitmap32 = bitmap.copy(Bitmap.Config.ARGB_8888, true); Utils.bitmapToMat(myBitmap32, srcImage); Imgproc.cvtColor(srcImage, srcImage, Imgproc.COLOR_BGR2RGB, 4); } Utils.bitmapToMat(bitmap, srcImage); // cropImage(); seamlessEdges(srcImage); mSrcWidth = srcImage.cols(); mSrcHeight = srcImage.rows(); halfGenImageSize = genImageSize / 2; spherifiedImage = new Mat(); spherifiedImage.create(genImageSize, genImageSize, CvType.CV_8UC4); insideCircleOutRadius = (int) (genImageSize / 12); topY = (int) (mSrcHeight * (topMargin)); footY = (int) (mSrcHeight * (footMargin)); withinHeight = topY - footY; scale = withinHeight / ((double) (croppedImageSize / 2 - insideCircleOutRadius)); offset = (int) (footY - scale * insideCircleOutRadius); numProcesses = Runtime.getRuntime().availableProcessors(); if (numProcesses < 3) numProcesses = 1; else numProcesses = 3; }
public void setSpherifiedImage(Bitmap bitmap) { spherifiedImage = new Mat(); spherifiedImage.create(bitmap.getHeight(), bitmap.getWidth(), CvType.CV_8UC3); Utils.bitmapToMat(bitmap, spherifiedImage); genImageSize = spherifiedImage.cols(); croppedImageSize = (int) (genImageSize * Math.sin(Math.PI / 4.0)); halfGenImageSize = genImageSize / 2; }
/** * @param inputImg * @param minValue * @param maxValue * @return Mat */ public static Mat thresholding(Mat inputImg, Integer minValue, Integer maxValue) { Mat frame = inputImg; // яскравість // frame.convertTo(frame , -1, 10d * 33 / 100, 0); // Imgproc.medianBlur(frame,frame, 17); // Core.bitwise_not(frame,frame ); // Mat frame = new Mat(image.rows(), image.cols(), image.type()); // frame.convertTo(frame, -1, 10d * 20 / 100, 0); Mat hsvImg = new Mat(); List<Mat> hsvPlanes = new ArrayList<>(); Mat thresholdImg = new Mat(); int thresh_type = Imgproc.THRESH_BINARY_INV; // if (this.inverse.isSelected()) // thresh_type = Imgproc.THRESH_BINARY; // threshold the image with the average hue value // System.out.println("size " +frame.size()); hsvImg.create(frame.size(), CvType.CV_8U); // Imgproc.cvtColor(frame, hsvImg, Imgproc.COLOR_BGR2HSV); Core.split(hsvImg, hsvPlanes); // get the average hue value of the image // double threshValue = PreProcessingOperation.getHistAverage(hsvImg, hsvPlanes.get(0)); // System.out.println(threshValue); /* if(threshValue > 40){ maxValue = 160; }else{ maxValue = 40; }*/ // Imgproc.threshold(hsvPlanes.get(1), thresholdImg, minValue , maxValue , thresh_type); Imgproc.blur(thresholdImg, thresholdImg, new Size(27, 27)); // dilate to fill gaps, erode to smooth edges Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.threshold(thresholdImg, thresholdImg, minValue, maxValue, Imgproc.THRESH_BINARY); // create the new image Mat foreground = new Mat(frame.size(), CvType.CV_8UC3, new Scalar(255, 255, 255)); Core.bitwise_not(thresholdImg, foreground); frame.copyTo(foreground, thresholdImg); /////////////////////////////////////////////////////////////////////////////////////// /// //// return foreground; /*Mat hsvImg = new Mat(); List<Mat> hsvPlanes = new ArrayList<>(); Mat thresholdImg = new Mat(); int thresh_type = Imgproc.THRESH_BINARY_INV; // threshold the image with the average hue value hsvImg.create(inputImg.size(), CvType.CV_8U); Imgproc.cvtColor(inputImg, hsvImg, Imgproc.COLOR_BGR2HSV); Core.split(hsvImg, hsvPlanes); // get the average hue value of the image double threshValue = PreProcessingOperation.getHistAverage(hsvImg, hsvPlanes.get(0)); Imgproc.threshold(hsvPlanes.get(0), thresholdImg, minValue, maxValue, thresh_type); Imgproc.blur(thresholdImg, thresholdImg, new Size(3, 3)); // dilate to fill gaps, erode to smooth edges Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 3); Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.threshold(thresholdImg, thresholdImg, minValue, maxValue, Imgproc.THRESH_BINARY); // create the new image Mat foreground = new Mat(inputImg.size(), CvType.CV_8UC3, new Scalar(255, 255, 255)); inputImg.copyTo(foreground, thresholdImg); Core.bitwise_not(foreground,foreground); return foreground;*/ }