Example #1
0
  /**
   * Similar to _getNeighbors1D and _getNeighbors2D (Not included in this implementation), this
   * function Returns a list of indices corresponding to the neighbors of a given column. Since the
   * permanence values are stored in such a way that information about topology is lost. This method
   * allows for reconstructing the topology of the inputs, which are flattened to one array. Given a
   * column's index, its neighbors are defined as those columns that are 'radius' indices away from
   * it in each dimension. The method returns a list of the flat indices of these columns.
   *
   * @param c matrix configured to this {@code SpatialPooler}'s dimensions for transformation work.
   * @param columnIndex The index identifying a column in the permanence, potential and connectivity
   *     matrices.
   * @param topology A {@link SparseMatrix} with dimensionality info.
   * @param inhibitionRadius Indicates how far away from a given column are other columns to be
   *     considered its neighbors. In the previous 2x3 example, each column with coordinates:
   *     [2+/-radius, 3+/-radius] is considered a neighbor.
   * @param wrapAround A boolean value indicating whether to consider columns at the border of a
   *     dimensions to be adjacent to columns at the other end of the dimension. For example, if the
   *     columns are laid out in one dimension, columns 1 and 10 will be considered adjacent if
   *     wrapAround is set to true: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
   * @return a list of the flat indices of these columns
   */
  public TIntArrayList getNeighborsND(
      Connections c,
      int columnIndex,
      SparseMatrix<?> topology,
      int inhibitionRadius,
      boolean wrapAround) {
    final int[] dimensions = topology.getDimensions();
    int[] columnCoords = topology.computeCoordinates(columnIndex);
    List<int[]> dimensionCoords = new ArrayList<>();

    for (int i = 0; i < dimensions.length; i++) {
      int[] range =
          ArrayUtils.range(
              columnCoords[i] - inhibitionRadius, columnCoords[i] + inhibitionRadius + 1);
      int[] curRange = new int[range.length];

      if (wrapAround) {
        for (int j = 0; j < curRange.length; j++) {
          curRange[j] = (int) ArrayUtils.positiveRemainder(range[j], dimensions[i]);
        }
      } else {
        final int idx = i;
        curRange =
            ArrayUtils.retainLogicalAnd(
                range,
                new Condition[] {
                  ArrayUtils.GREATER_OR_EQUAL_0,
                  new Condition.Adapter<Integer>() {
                    @Override
                    public boolean eval(int n) {
                      return n < dimensions[idx];
                    }
                  }
                });
      }
      dimensionCoords.add(ArrayUtils.unique(curRange));
    }

    List<int[]> neighborList = ArrayUtils.dimensionsToCoordinateList(dimensionCoords);
    TIntArrayList neighbors = new TIntArrayList(neighborList.size());
    int size = neighborList.size();
    for (int i = 0; i < size; i++) {
      int flatIndex = topology.computeIndex(neighborList.get(i), false);
      if (flatIndex == columnIndex) continue;
      neighbors.add(flatIndex);
    }
    return neighbors;
  }
Example #2
0
  /**
   * The range of connectedSynapses per column, averaged for each dimension. This value is used to
   * calculate the inhibition radius. This variation of the function supports arbitrary column
   * dimensions.
   *
   * @param c the {@link Connections} (spatial pooler memory)
   * @param columnIndex the current column for which to avg.
   * @return
   */
  public double avgConnectedSpanForColumnND(Connections c, int columnIndex) {
    int[] dimensions = c.getInputDimensions();
    int[] connected = c.getColumn(columnIndex).getProximalDendrite().getConnectedSynapsesSparse(c);
    if (connected == null || connected.length == 0) return 0;

    int[] maxCoord = new int[c.getInputDimensions().length];
    int[] minCoord = new int[c.getInputDimensions().length];
    Arrays.fill(maxCoord, -1);
    Arrays.fill(minCoord, ArrayUtils.max(dimensions));
    SparseMatrix<?> inputMatrix = c.getInputMatrix();
    for (int i = 0; i < connected.length; i++) {
      maxCoord = ArrayUtils.maxBetween(maxCoord, inputMatrix.computeCoordinates(connected[i]));
      minCoord = ArrayUtils.minBetween(minCoord, inputMatrix.computeCoordinates(connected[i]));
    }
    return ArrayUtils.average(ArrayUtils.add(ArrayUtils.subtract(maxCoord, minCoord), 1));
  }