/** * Loads the list of enabled and disabled encryption protocols with their priority. * * @param enabledEncryptionProtocols The list of enabled encryption protocol available for this * account. * @param disabledEncryptionProtocols The list of disabled encryption protocol available for this * account. */ private void loadEncryptionProtocols( Map<String, Integer> encryptionProtocols, Map<String, Boolean> encryptionProtocolStatus) { int nbEncryptionProtocols = ENCRYPTION_PROTOCOLS.length; String[] encryptions = new String[nbEncryptionProtocols]; boolean[] selectedEncryptions = new boolean[nbEncryptionProtocols]; // Load stored values. int prefixeLength = ProtocolProviderFactory.ENCRYPTION_PROTOCOL.length() + 1; String encryptionProtocolPropertyName; String name; int index; boolean enabled; Iterator<String> encryptionProtocolNames = encryptionProtocols.keySet().iterator(); while (encryptionProtocolNames.hasNext()) { encryptionProtocolPropertyName = encryptionProtocolNames.next(); index = encryptionProtocols.get(encryptionProtocolPropertyName); // If the property is set. if (index != -1) { name = encryptionProtocolPropertyName.substring(prefixeLength); if (isExistingEncryptionProtocol(name)) { enabled = encryptionProtocolStatus.get( ProtocolProviderFactory.ENCRYPTION_PROTOCOL_STATUS + "." + name); encryptions[index] = name; selectedEncryptions[index] = enabled; } } } // Load default values. String encryptionProtocol; boolean set; int j = 0; for (int i = 0; i < ENCRYPTION_PROTOCOLS.length; ++i) { encryptionProtocol = ENCRYPTION_PROTOCOLS[i]; // Specify a default value only if there is no specific value set. if (!encryptionProtocols.containsKey( ProtocolProviderFactory.ENCRYPTION_PROTOCOL + "." + encryptionProtocol)) { set = false; // Search for the first empty element. while (j < encryptions.length && !set) { if (encryptions[j] == null) { encryptions[j] = encryptionProtocol; // By default only ZRTP is set to true. selectedEncryptions[j] = encryptionProtocol.equals("ZRTP"); set = true; } ++j; } } } this.encryptionConfigurationTableModel.init(encryptions, selectedEncryptions); }
/** * Returns default <tt>WebRtcDataStream</tt> if it's ready or <tt>null</tt> otherwise. * * @return <tt>WebRtcDataStream</tt> if it's ready or <tt>null</tt> otherwise. * @throws IOException */ public WebRtcDataStream getDefaultDataStream() throws IOException { WebRtcDataStream def; synchronized (this) { if (sctpSocket == null) { def = null; } else { // Channel that runs on sid 0 def = channels.get(0); if (def == null) { def = openChannel(0, 0, 0, 0, "default"); } // Pawel Domas: Must be acknowledged before use /* * XXX Lyubomir Marinov: We're always sending ordered. According * to "WebRTC Data Channel Establishment Protocol", we can start * sending messages containing user data after the * DATA_CHANNEL_OPEN message has been sent without waiting for * the reception of the corresponding DATA_CHANNEL_ACK message. */ // if (!def.isAcknowledged()) // def = null; } } return def; }
/** * Returns the sequence number to use for a specific RTX packet, which is based on the packet's * original sequence number. * * <p>Because we terminate the RTX format, and with simulcast we might translate RTX packets from * multiple SSRCs into the same SSRC, we keep count of the RTX packets (and their sequence * numbers) which we sent for each SSRC. * * @param ssrc the SSRC of the RTX stream for the packet. * @param defaultSeq the default sequence number to use in case we don't (yet) have any * information about <tt>ssrc</tt>. * @return the sequence number which should be used for the next RTX packet sent using SSRC * <tt>ssrc</tt>. */ private int getNextRtxSequenceNumber(long ssrc, int defaultSeq) { Integer seq; synchronized (rtxSequenceNumbers) { seq = rtxSequenceNumbers.get(ssrc); if (seq == null) seq = defaultSeq; else seq++; rtxSequenceNumbers.put(ssrc, seq); } return seq; }
/** * Returns the sequence number to use for a specific RTX packet, which is based on the packet's * original sequence number. * * <p>Because we terminate the RTX format, and with simulcast we might translate RTX packets from * multiple SSRCs into the same SSRC, we keep count of the RTX packets (and their sequence * numbers) which we sent for each SSRC. * * @param ssrc the SSRC of the RTX stream for the packet. * @return the sequence number which should be used for the next RTX packet sent using SSRC * <tt>ssrc</tt>. */ private int getNextRtxSequenceNumber(long ssrc) { Integer seq; synchronized (rtxSequenceNumbers) { seq = rtxSequenceNumbers.get(ssrc); if (seq == null) seq = new Random().nextInt(0xffff); else seq++; rtxSequenceNumbers.put(ssrc, seq); } return seq; }
/** * Returns, the <tt>TransportManager</tt> instance for the channel-bundle with ID * <tt>channelBundleId</tt>. If no instance exists and <tt>create</tt> is <tt>true</tt>, one will * be created. * * @param channelBundleId the ID of the channel-bundle for which to return the * <tt>TransportManager</tt>. * @param create whether to create a new instance, if one doesn't exist. * @return the <tt>TransportManager</tt> instance for the channel-bundle with ID * <tt>channelBundleId</tt>. */ IceUdpTransportManager getTransportManager(String channelBundleId, boolean create) { IceUdpTransportManager transportManager; synchronized (transportManagers) { transportManager = transportManagers.get(channelBundleId); if (transportManager == null && create && !isExpired()) { try { // FIXME: the initiator is hard-coded // We assume rtcp-mux when bundle is used, so we make only // one component. transportManager = new IceUdpTransportManager(this, true, 1); } catch (IOException ioe) { throw new UndeclaredThrowableException(ioe); } transportManagers.put(channelBundleId, transportManager); } } return transportManager; }
/** * {@inheritDoc} * * <p>SCTP input data callback. */ @Override public void onSctpPacket( byte[] data, int sid, int ssn, int tsn, long ppid, int context, int flags) { if (ppid == WEB_RTC_PPID_CTRL) { // Channel control PPID try { onCtrlPacket(data, sid); } catch (IOException e) { logger.error("IOException when processing ctrl packet", e); } } else if (ppid == WEB_RTC_PPID_STRING || ppid == WEB_RTC_PPID_BIN) { WebRtcDataStream channel; synchronized (this) { channel = channels.get(sid); } if (channel == null) { logger.error("No channel found for sid: " + sid); return; } if (ppid == WEB_RTC_PPID_STRING) { // WebRTC String String str; String charsetName = "UTF-8"; try { str = new String(data, charsetName); } catch (UnsupportedEncodingException uee) { logger.error("Unsupported charset encoding/name " + charsetName, uee); str = null; } channel.onStringMsg(str); } else { // WebRTC Binary channel.onBinaryMsg(data); } } else { logger.warn("Got message on unsupported PPID: " + ppid); } }
/** * Estimate the <tt>RemoteClock</tt> of a given RTP stream (identified by its SSRC) at a given * time. * * @param ssrc the SSRC of the RTP stream whose <tt>RemoteClock</tt> we want to estimate. * @param time the local time that will be mapped to a remote time. * @return An estimation of the <tt>RemoteClock</tt> at time "time". */ public RemoteClock estimate(int ssrc, long time) { ReceivedRemoteClock receivedRemoteClock = receivedClocks.get(ssrc); if (receivedRemoteClock == null || receivedRemoteClock.getFrequencyHz() == -1) { // We can't continue if we don't have NTP and RTP timestamps // and/or the original sender frequency, so move to the next // one. return null; } long delayMillis = time - receivedRemoteClock.getReceivedTime(); // Estimate the remote wall clock. long remoteTime = receivedRemoteClock.getRemoteClock().getRemoteTime(); long estimatedRemoteTime = remoteTime + delayMillis; // Drift the RTP timestamp. int rtpTimestamp = receivedRemoteClock.getRemoteClock().getRtpTimestamp() + ((int) delayMillis) * (receivedRemoteClock.getFrequencyHz() / 1000); return new RemoteClock(estimatedRemoteTime, rtpTimestamp); }
/** * Handles control packet. * * @param data raw packet data that arrived on control PPID. * @param sid SCTP stream id on which the data has arrived. */ private synchronized void onCtrlPacket(byte[] data, int sid) throws IOException { ByteBuffer buffer = ByteBuffer.wrap(data); int messageType = /* 1 byte unsigned integer */ 0xFF & buffer.get(); if (messageType == MSG_CHANNEL_ACK) { if (logger.isDebugEnabled()) { logger.debug(getEndpoint().getID() + " ACK received SID: " + sid); } // Open channel ACK WebRtcDataStream channel = channels.get(sid); if (channel != null) { // Ack check prevents from firing multiple notifications // if we get more than one ACKs (by mistake/bug). if (!channel.isAcknowledged()) { channel.ackReceived(); notifyChannelOpened(channel); } else { logger.warn("Redundant ACK received for SID: " + sid); } } else { logger.error("No channel exists on sid: " + sid); } } else if (messageType == MSG_OPEN_CHANNEL) { int channelType = /* 1 byte unsigned integer */ 0xFF & buffer.get(); int priority = /* 2 bytes unsigned integer */ 0xFFFF & buffer.getShort(); long reliability = /* 4 bytes unsigned integer */ 0xFFFFFFFFL & buffer.getInt(); int labelLength = /* 2 bytes unsigned integer */ 0xFFFF & buffer.getShort(); int protocolLength = /* 2 bytes unsigned integer */ 0xFFFF & buffer.getShort(); String label; String protocol; if (labelLength == 0) { label = ""; } else { byte[] labelBytes = new byte[labelLength]; buffer.get(labelBytes); label = new String(labelBytes, "UTF-8"); } if (protocolLength == 0) { protocol = ""; } else { byte[] protocolBytes = new byte[protocolLength]; buffer.get(protocolBytes); protocol = new String(protocolBytes, "UTF-8"); } if (logger.isDebugEnabled()) { logger.debug( "!!! " + getEndpoint().getID() + " data channel open request on SID: " + sid + " type: " + channelType + " prio: " + priority + " reliab: " + reliability + " label: " + label + " proto: " + protocol); } if (channels.containsKey(sid)) { logger.error("Channel on sid: " + sid + " already exists"); } WebRtcDataStream newChannel = new WebRtcDataStream(sctpSocket, sid, label, true); channels.put(sid, newChannel); sendOpenChannelAck(sid); notifyChannelOpened(newChannel); } else { logger.error("Unexpected ctrl msg type: " + messageType); } }
/** * Inspect an <tt>RTCPCompoundPacket</tt> and build-up the state for future estimations. * * @param pkt */ public void apply(RTCPCompoundPacket pkt) { if (pkt == null || pkt.packets == null || pkt.packets.length == 0) { return; } for (RTCPPacket rtcpPacket : pkt.packets) { switch (rtcpPacket.type) { case RTCPPacket.SR: RTCPSRPacket srPacket = (RTCPSRPacket) rtcpPacket; // The media sender SSRC. int ssrc = srPacket.ssrc; // Convert 64-bit NTP timestamp to Java standard time. // Note that java time (milliseconds) by definition has // less precision then NTP time (picoseconds) so // converting NTP timestamp to java time and back to NTP // timestamp loses precision. For example, Tue, Dec 17 // 2002 09:07:24.810 EST is represented by a single // Java-based time value of f22cd1fc8a, but its NTP // equivalent are all values ranging from // c1a9ae1c.cf5c28f5 to c1a9ae1c.cf9db22c. // Use round-off on fractional part to preserve going to // lower precision long fraction = Math.round(1000D * srPacket.ntptimestamplsw / 0x100000000L); /* * If the most significant bit (MSB) on the seconds * field is set we use a different time base. The * following text is a quote from RFC-2030 (SNTP v4): * * If bit 0 is set, the UTC time is in the range * 1968-2036 and UTC time is reckoned from 0h 0m 0s UTC * on 1 January 1900. If bit 0 is not set, the time is * in the range 2036-2104 and UTC time is reckoned from * 6h 28m 16s UTC on 7 February 2036. */ long msb = srPacket.ntptimestampmsw & 0x80000000L; long remoteTime = (msb == 0) // use base: 7-Feb-2036 @ 06:28:16 UTC ? msb0baseTime + (srPacket.ntptimestampmsw * 1000) + fraction // use base: 1-Jan-1900 @ 01:00:00 UTC : msb1baseTime + (srPacket.ntptimestampmsw * 1000) + fraction; // Estimate the clock rate of the sender. int frequencyHz = -1; if (receivedClocks.containsKey(ssrc)) { // Calculate the clock rate. ReceivedRemoteClock oldStats = receivedClocks.get(ssrc); RemoteClock oldRemoteClock = oldStats.getRemoteClock(); frequencyHz = Math.round( (float) (((int) srPacket.rtptimestamp - oldRemoteClock.getRtpTimestamp()) & 0xffffffffl) / (remoteTime - oldRemoteClock.getRemoteTime())); } // Replace whatever was in there before. receivedClocks.put( ssrc, new ReceivedRemoteClock( ssrc, remoteTime, (int) srPacket.rtptimestamp, frequencyHz)); break; case RTCPPacket.SDES: break; } } }