@Override
  public final boolean testPoint(final Transform xf, final Vec2 p) {

    final Vec2 pLocal = pool1;
    final Vec2 temp = pool2;

    pLocal.set(p).subLocal(xf.p);
    Rot.mulTransUnsafe(xf.q, pLocal, temp);
    pLocal.set(temp);

    if (m_debug) {
      System.out.println("--testPoint debug--");
      System.out.println("Vertices: ");
      for (int i = 0; i < m_count; ++i) {
        System.out.println(m_vertices[i]);
      }
      System.out.println("pLocal: " + pLocal);
    }

    for (int i = 0; i < m_count; ++i) {
      temp.set(pLocal).subLocal(m_vertices[i]);
      final float dot = Vec2.dot(m_normals[i], temp);
      if (dot > 0.0f) {
        return false;
      }
    }

    return true;
  }
  /**
   * Build vertices to represent an oriented box.
   *
   * @param hx the half-width.
   * @param hy the half-height.
   * @param center the center of the box in local coordinates.
   * @param angle the rotation of the box in local coordinates.
   */
  public final void setAsBox(final float hx, final float hy, final Vec2 center, final float angle) {
    m_count = 4;
    m_vertices[0].set(-hx, -hy);
    m_vertices[1].set(hx, -hy);
    m_vertices[2].set(hx, hy);
    m_vertices[3].set(-hx, hy);
    m_normals[0].set(0.0f, -1.0f);
    m_normals[1].set(1.0f, 0.0f);
    m_normals[2].set(0.0f, 1.0f);
    m_normals[3].set(-1.0f, 0.0f);
    m_centroid.set(center);

    final Transform xf = poolt1;
    xf.p.set(center);
    xf.q.set(angle);

    // Transform vertices and normals.
    for (int i = 0; i < m_count; ++i) {
      Transform.mulToOut(xf, m_vertices[i], m_vertices[i]);
      Rot.mulToOut(xf.q, m_normals[i], m_normals[i]);
    }
  }
  @Override
  public final boolean raycast(
      RayCastOutput output, RayCastInput input, Transform xf, int childIndex) {
    final Vec2 p1 = pool1;
    final Vec2 p2 = pool2;
    final Vec2 d = pool3;
    final Vec2 temp = pool4;

    p1.set(input.p1).subLocal(xf.p);
    Rot.mulTrans(xf.q, p1, p1);
    p2.set(input.p2).subLocal(xf.p);
    Rot.mulTrans(xf.q, p2, p2);
    d.set(p2).subLocal(p1);

    // if (count == 2) {

    // } else {

    float lower = 0, upper = input.maxFraction;

    int index = -1;

    for (int i = 0; i < m_count; ++i) {
      // p = p1 + a * d
      // dot(normal, p - v) = 0
      // dot(normal, p1 - v) + a * dot(normal, d) = 0
      temp.set(m_vertices[i]).subLocal(p1);
      final float numerator = Vec2.dot(m_normals[i], temp);
      final float denominator = Vec2.dot(m_normals[i], d);

      if (denominator == 0.0f) {
        if (numerator < 0.0f) {
          return false;
        }
      } else {
        // Note: we want this predicate without division:
        // lower < numerator / denominator, where denominator < 0
        // Since denominator < 0, we have to flip the inequality:
        // lower < numerator / denominator <==> denominator * lower >
        // numerator.
        if (denominator < 0.0f && numerator < lower * denominator) {
          // Increase lower.
          // The segment enters this half-space.
          lower = numerator / denominator;
          index = i;
        } else if (denominator > 0.0f && numerator < upper * denominator) {
          // Decrease upper.
          // The segment exits this half-space.
          upper = numerator / denominator;
        }
      }

      if (upper < lower) {
        return false;
      }
    }

    assert (0.0f <= lower && lower <= input.maxFraction);

    if (index >= 0) {
      output.fraction = lower;
      Rot.mulToOutUnsafe(xf.q, m_normals[index], output.normal);
      // normal = Mul(xf.R, m_normals[index]);
      return true;
    }
    return false;
  }
Example #4
0
  @Override
  public boolean solvePositionConstraints(final org.jbox2d.dynamics.SolverData data) {
    final Rot qA = pool.popRot();
    final Rot qB = pool.popRot();
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;

    qA.set(aA);
    qB.set(aB);

    float angularError = 0.0f;
    float positionError = 0.0f;

    boolean fixedRotation = (m_invIA + m_invIB == 0.0f);

    // Solve angular limit constraint.
    if (m_enableLimit && m_limitState != LimitState.INACTIVE && fixedRotation == false) {
      float angle = aB - aA - m_referenceAngle;
      float limitImpulse = 0.0f;

      if (m_limitState == LimitState.EQUAL) {
        // Prevent large angular corrections
        float C =
            MathUtils.clamp(
                angle - m_lowerAngle,
                -Settings.maxAngularCorrection,
                Settings.maxAngularCorrection);
        limitImpulse = -m_motorMass * C;
        angularError = MathUtils.abs(C);
      } else if (m_limitState == LimitState.AT_LOWER) {
        float C = angle - m_lowerAngle;
        angularError = -C;

        // Prevent large angular corrections and allow some slop.
        C = MathUtils.clamp(C + Settings.angularSlop, -Settings.maxAngularCorrection, 0.0f);
        limitImpulse = -m_motorMass * C;
      } else if (m_limitState == LimitState.AT_UPPER) {
        float C = angle - m_upperAngle;
        angularError = C;

        // Prevent large angular corrections and allow some slop.
        C = MathUtils.clamp(C - Settings.angularSlop, 0.0f, Settings.maxAngularCorrection);
        limitImpulse = -m_motorMass * C;
      }

      aA -= m_invIA * limitImpulse;
      aB += m_invIB * limitImpulse;
    }
    // Solve point-to-point constraint.
    {
      qA.set(aA);
      qB.set(aB);

      final Vec2 rA = pool.popVec2();
      final Vec2 rB = pool.popVec2();
      final Vec2 C = pool.popVec2();
      final Vec2 impulse = pool.popVec2();

      Rot.mulToOutUnsafe(qA, C.set(m_localAnchorA).subLocal(m_localCenterA), rA);
      Rot.mulToOutUnsafe(qB, C.set(m_localAnchorB).subLocal(m_localCenterB), rB);
      C.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
      positionError = C.length();

      float mA = m_invMassA, mB = m_invMassB;
      float iA = m_invIA, iB = m_invIB;

      final org.jbox2d.common.Mat22 K = pool.popMat22();
      K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y;
      K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y;
      K.ey.x = K.ex.y;
      K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x;
      K.solveToOut(C, impulse);
      impulse.negateLocal();

      cA.x -= mA * impulse.x;
      cA.y -= mA * impulse.y;
      aA -= iA * Vec2.cross(rA, impulse);

      cB.x += mB * impulse.x;
      cB.y += mB * impulse.y;
      aB += iB * Vec2.cross(rB, impulse);

      pool.pushVec2(4);
      pool.pushMat22(1);
    }
    // data.positions[m_indexA].c.set(cA);
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c.set(cB);
    data.positions[m_indexB].a = aB;

    pool.pushRot(2);

    return positionError <= Settings.linearSlop && angularError <= Settings.angularSlop;
  }
Example #5
0
  @Override
  public void initVelocityConstraints(final org.jbox2d.dynamics.SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;

    // Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;

    // Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rot qA = pool.popRot();
    final Rot qB = pool.popRot();
    final Vec2 temp = pool.popVec2();

    qA.set(aA);
    qB.set(aB);

    // Compute the effective masses.
    Rot.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rot.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);

    // J = [-I -r1_skew I r2_skew]
    // [ 0 -1 0 1]
    // r_skew = [-ry; rx]

    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
    // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
    // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]

    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;

    boolean fixedRotation = (iA + iB == 0.0f);

    m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
    m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
    m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB;
    m_mass.ex.y = m_mass.ey.x;
    m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
    m_mass.ez.y = m_rA.x * iA + m_rB.x * iB;
    m_mass.ex.z = m_mass.ez.x;
    m_mass.ey.z = m_mass.ez.y;
    m_mass.ez.z = iA + iB;

    m_motorMass = iA + iB;
    if (m_motorMass > 0.0f) {
      m_motorMass = 1.0f / m_motorMass;
    }

    if (m_enableMotor == false || fixedRotation) {
      m_motorImpulse = 0.0f;
    }

    if (m_enableLimit && fixedRotation == false) {
      float jointAngle = aB - aA - m_referenceAngle;
      if (MathUtils.abs(m_upperAngle - m_lowerAngle) < 2.0f * Settings.angularSlop) {
        m_limitState = LimitState.EQUAL;
      } else if (jointAngle <= m_lowerAngle) {
        if (m_limitState != LimitState.AT_LOWER) {
          m_impulse.z = 0.0f;
        }
        m_limitState = LimitState.AT_LOWER;
      } else if (jointAngle >= m_upperAngle) {
        if (m_limitState != LimitState.AT_UPPER) {
          m_impulse.z = 0.0f;
        }
        m_limitState = LimitState.AT_UPPER;
      } else {
        m_limitState = LimitState.INACTIVE;
        m_impulse.z = 0.0f;
      }
    } else {
      m_limitState = LimitState.INACTIVE;
    }

    if (data.step.warmStarting) {
      final Vec2 P = pool.popVec2();
      // Scale impulses to support a variable time step.
      m_impulse.x *= data.step.dtRatio;
      m_impulse.y *= data.step.dtRatio;
      m_motorImpulse *= data.step.dtRatio;

      P.x = m_impulse.x;
      P.y = m_impulse.y;

      vA.x -= mA * P.x;
      vA.y -= mA * P.y;
      wA -= iA * (Vec2.cross(m_rA, P) + m_motorImpulse + m_impulse.z);

      vB.x += mB * P.x;
      vB.y += mB * P.y;
      wB += iB * (Vec2.cross(m_rB, P) + m_motorImpulse + m_impulse.z);
      pool.pushVec2(1);
    } else {
      m_impulse.setZero();
      m_motorImpulse = 0.0f;
    }
    // data.velocities[m_indexA].v.set(vA);
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;

    pool.pushVec2(1);
    pool.pushRot(2);
  }