private void computeBounds(int[] lowerValues, int[] upperValues, AABB aabb) { if (debugPrint) { System.out.println("ComputeBounds()"); } assert (aabb.upperBound.x > aabb.lowerBound.x); assert (aabb.upperBound.y > aabb.lowerBound.y); Vec2 minVertex = MathUtils.clamp(aabb.lowerBound, m_worldAABB.lowerBound, m_worldAABB.upperBound); Vec2 maxVertex = MathUtils.clamp(aabb.upperBound, m_worldAABB.lowerBound, m_worldAABB.upperBound); // System.out.printf("minV = %f %f, maxV = %f %f // \n",aabb.minVertex.x,aabb.minVertex.y,aabb.maxVertex.x,aabb.maxVertex.y); // Bump lower bounds downs and upper bounds up. This ensures correct // sorting of // lower/upper bounds that would have equal values. // TODO_ERIN implement fast float to int conversion. lowerValues[0] = (int) (m_quantizationFactor.x * (minVertex.x - m_worldAABB.lowerBound.x)) & (Integer.MAX_VALUE - 1); upperValues[0] = (int) (m_quantizationFactor.x * (maxVertex.x - m_worldAABB.lowerBound.x)) | 1; lowerValues[1] = (int) (m_quantizationFactor.y * (minVertex.y - m_worldAABB.lowerBound.y)) & (Integer.MAX_VALUE - 1); upperValues[1] = (int) (m_quantizationFactor.y * (maxVertex.y - m_worldAABB.lowerBound.y)) | 1; }
@Override public boolean solvePositionConstraints(final org.jbox2d.dynamics.SolverData data) { final Rot qA = pool.popRot(); final Rot qB = pool.popRot(); Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; qA.set(aA); qB.set(aB); float angularError = 0.0f; float positionError = 0.0f; boolean fixedRotation = (m_invIA + m_invIB == 0.0f); // Solve angular limit constraint. if (m_enableLimit && m_limitState != LimitState.INACTIVE && fixedRotation == false) { float angle = aB - aA - m_referenceAngle; float limitImpulse = 0.0f; if (m_limitState == LimitState.EQUAL) { // Prevent large angular corrections float C = MathUtils.clamp( angle - m_lowerAngle, -Settings.maxAngularCorrection, Settings.maxAngularCorrection); limitImpulse = -m_motorMass * C; angularError = MathUtils.abs(C); } else if (m_limitState == LimitState.AT_LOWER) { float C = angle - m_lowerAngle; angularError = -C; // Prevent large angular corrections and allow some slop. C = MathUtils.clamp(C + Settings.angularSlop, -Settings.maxAngularCorrection, 0.0f); limitImpulse = -m_motorMass * C; } else if (m_limitState == LimitState.AT_UPPER) { float C = angle - m_upperAngle; angularError = C; // Prevent large angular corrections and allow some slop. C = MathUtils.clamp(C - Settings.angularSlop, 0.0f, Settings.maxAngularCorrection); limitImpulse = -m_motorMass * C; } aA -= m_invIA * limitImpulse; aB += m_invIB * limitImpulse; } // Solve point-to-point constraint. { qA.set(aA); qB.set(aB); final Vec2 rA = pool.popVec2(); final Vec2 rB = pool.popVec2(); final Vec2 C = pool.popVec2(); final Vec2 impulse = pool.popVec2(); Rot.mulToOutUnsafe(qA, C.set(m_localAnchorA).subLocal(m_localCenterA), rA); Rot.mulToOutUnsafe(qB, C.set(m_localAnchorB).subLocal(m_localCenterB), rB); C.set(cB).addLocal(rB).subLocal(cA).subLocal(rA); positionError = C.length(); float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; final org.jbox2d.common.Mat22 K = pool.popMat22(); K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; K.ey.x = K.ex.y; K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; K.solveToOut(C, impulse); impulse.negateLocal(); cA.x -= mA * impulse.x; cA.y -= mA * impulse.y; aA -= iA * Vec2.cross(rA, impulse); cB.x += mB * impulse.x; cB.y += mB * impulse.y; aB += iB * Vec2.cross(rB, impulse); pool.pushVec2(4); pool.pushMat22(1); } // data.positions[m_indexA].c.set(cA); data.positions[m_indexA].a = aA; // data.positions[m_indexB].c.set(cB); data.positions[m_indexB].a = aB; pool.pushRot(2); return positionError <= Settings.linearSlop && angularError <= Settings.angularSlop; }
@Override public void solveVelocityConstraints(final org.jbox2d.dynamics.SolverData data) { Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; boolean fixedRotation = (iA + iB == 0.0f); // Solve motor constraint. if (m_enableMotor && m_limitState != LimitState.EQUAL && fixedRotation == false) { float Cdot = wB - wA - m_motorSpeed; float impulse = -m_motorMass * Cdot; float oldImpulse = m_motorImpulse; float maxImpulse = data.step.dt * m_maxMotorTorque; m_motorImpulse = MathUtils.clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } final Vec2 temp = pool.popVec2(); // Solve limit constraint. if (m_enableLimit && m_limitState != LimitState.INACTIVE && fixedRotation == false) { final Vec2 Cdot1 = pool.popVec2(); final Vec3 Cdot = pool.popVec3(); // Solve point-to-point constraint Vec2.crossToOutUnsafe(wA, m_rA, temp); Vec2.crossToOutUnsafe(wB, m_rB, Cdot1); Cdot1.addLocal(vB).subLocal(vA).subLocal(temp); float Cdot2 = wB - wA; Cdot.set(Cdot1.x, Cdot1.y, Cdot2); Vec3 impulse = pool.popVec3(); m_mass.solve33ToOut(Cdot, impulse); impulse.negateLocal(); if (m_limitState == LimitState.EQUAL) { m_impulse.addLocal(impulse); } else if (m_limitState == LimitState.AT_LOWER) { float newImpulse = m_impulse.z + impulse.z; if (newImpulse < 0.0f) { final Vec2 rhs = pool.popVec2(); rhs.set(m_mass.ez.x, m_mass.ez.y).mulLocal(m_impulse.z).subLocal(Cdot1); m_mass.solve22ToOut(rhs, temp); impulse.x = temp.x; impulse.y = temp.y; impulse.z = -m_impulse.z; m_impulse.x += temp.x; m_impulse.y += temp.y; m_impulse.z = 0.0f; pool.pushVec2(1); } else { m_impulse.addLocal(impulse); } } else if (m_limitState == LimitState.AT_UPPER) { float newImpulse = m_impulse.z + impulse.z; if (newImpulse > 0.0f) { final Vec2 rhs = pool.popVec2(); rhs.set(m_mass.ez.x, m_mass.ez.y).mulLocal(m_impulse.z).subLocal(Cdot1); m_mass.solve22ToOut(rhs, temp); impulse.x = temp.x; impulse.y = temp.y; impulse.z = -m_impulse.z; m_impulse.x += temp.x; m_impulse.y += temp.y; m_impulse.z = 0.0f; pool.pushVec2(1); } else { m_impulse.addLocal(impulse); } } final Vec2 P = pool.popVec2(); P.set(impulse.x, impulse.y); vA.x -= mA * P.x; vA.y -= mA * P.y; wA -= iA * (Vec2.cross(m_rA, P) + impulse.z); vB.x += mB * P.x; vB.y += mB * P.y; wB += iB * (Vec2.cross(m_rB, P) + impulse.z); pool.pushVec2(2); pool.pushVec3(2); } else { // Solve point-to-point constraint Vec2 Cdot = pool.popVec2(); Vec2 impulse = pool.popVec2(); Vec2.crossToOutUnsafe(wA, m_rA, temp); Vec2.crossToOutUnsafe(wB, m_rB, Cdot); Cdot.addLocal(vB).subLocal(vA).subLocal(temp); m_mass.solve22ToOut(Cdot.negateLocal(), impulse); // just leave negated m_impulse.x += impulse.x; m_impulse.y += impulse.y; vA.x -= mA * impulse.x; vA.y -= mA * impulse.y; wA -= iA * Vec2.cross(m_rA, impulse); vB.x += mB * impulse.x; vB.y += mB * impulse.y; wB += iB * Vec2.cross(m_rB, impulse); pool.pushVec2(2); } // data.velocities[m_indexA].v.set(vA); data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(1); }