@SuppressWarnings("deprecation")
 @Before
 public void setup() throws RecommenderBuildException {
   List<Rating> rs = new ArrayList<Rating>();
   rs.add(Rating.create(1, 6, 4));
   rs.add(Rating.create(2, 6, 2));
   rs.add(Rating.create(1, 7, 3));
   rs.add(Rating.create(2, 7, 2));
   rs.add(Rating.create(3, 7, 5));
   rs.add(Rating.create(4, 7, 2));
   rs.add(Rating.create(1, 8, 3));
   rs.add(Rating.create(2, 8, 4));
   rs.add(Rating.create(3, 8, 3));
   rs.add(Rating.create(4, 8, 2));
   rs.add(Rating.create(5, 8, 3));
   rs.add(Rating.create(6, 8, 2));
   rs.add(Rating.create(1, 9, 3));
   rs.add(Rating.create(3, 9, 4));
   EventCollectionDAO dao = new EventCollectionDAO(rs);
   LenskitConfiguration config = new LenskitConfiguration();
   config.bind(EventDAO.class).to(dao);
   config.bind(ItemScorer.class).to(ItemItemScorer.class);
   // this is the default
   config.bind(UserVectorNormalizer.class).to(DefaultUserVectorNormalizer.class);
   config.bind(VectorNormalizer.class).to(IdentityVectorNormalizer.class);
   LenskitRecommenderEngine engine = LenskitRecommenderEngine.build(config);
   session = engine.createRecommender();
   recommender = session.getItemRecommender();
 }
  @Test
  public void testSnapshot() throws RecommenderBuildException {
    List<Rating> rs = new ArrayList<Rating>();
    rs.add(Ratings.make(1, 5, 2));
    rs.add(Ratings.make(1, 7, 4));
    rs.add(Ratings.make(8, 4, 5));
    rs.add(Ratings.make(8, 5, 4));

    EventDAO dao = EventCollectionDAO.create(rs);

    LenskitConfiguration config = new LenskitConfiguration();
    config.bind(EventDAO.class).to(dao);
    config.bind(ItemScorer.class).to(UserUserItemScorer.class);
    config.bind(NeighborFinder.class).to(SnapshotNeighborFinder.class);

    LenskitRecommenderEngine engine = LenskitRecommenderEngine.build(config);
    Recommender rec = engine.createRecommender();
    assertThat(rec.getItemScorer(), instanceOf(UserUserItemScorer.class));
    assertThat(rec.getItemRecommender(), instanceOf(TopNItemRecommender.class));
    RatingPredictor pred = rec.getRatingPredictor();
    assertThat(pred, instanceOf(SimpleRatingPredictor.class));

    Recommender rec2 = engine.createRecommender();
    assertThat(rec2.getItemScorer(), not(sameInstance(rec.getItemScorer())));
  }
 @Override
 public LenskitConfiguration getConfiguration() {
   LenskitConfiguration config = new LenskitConfiguration();
   Provider<BinaryRatingDAO> provider = Providers.fromSupplier(packedDao, BinaryRatingDAO.class);
   config.bind(BinaryRatingDAO.class).toProvider(provider);
   PreferenceDomain dom = getPreferenceDomain();
   if (dom != null) {
     config.addComponent(dom);
   }
   return config;
 }
  @SuppressWarnings("deprecation")
  @Before
  public void setup() throws RecommenderBuildException {
    List<Rating> rs = new ArrayList<Rating>();
    rs.add(Ratings.make(1, 5, 2));
    rs.add(Ratings.make(1, 7, 4));
    rs.add(Ratings.make(8, 4, 5));
    rs.add(Ratings.make(8, 5, 4));

    EventDAO dao = new EventCollectionDAO(rs);

    LenskitConfiguration config = new LenskitConfiguration();
    config.bind(EventDAO.class).to(dao);
    config.bind(ItemScorer.class).to(UserUserItemScorer.class);
    config.bind(NeighborFinder.class).to(LiveNeighborFinder.class);

    engine = LenskitRecommenderEngine.build(config);
  }
Example #5
0
  /**
   * Create the LensKit recommender configuration for <b>unweighted</b> user profile creation.
   *
   * @return The LensKit recommender configuration.
   */
  @SuppressWarnings("unchecked")
  public static LenskitConfiguration configureRecommender() {
    LenskitConfiguration config = new LenskitConfiguration();
    // configure the rating data source
    config.bind(EventDAO.class).to(MOOCRatingDAO.class);
    config.set(RatingFile.class).to(new File("data/ratings.csv"));

    // use custom item and user DAOs
    // specify item DAO implementation with tags
    config.bind(ItemDAO.class).to(CSVItemTagDAO.class);
    // specify tag file
    config.set(TagFile.class).to(new File("data/movie-tags.csv"));
    // and title file
    config.set(TitleFile.class).to(new File("data/movie-titles.csv"));

    // our user DAO can look up by user name
    config.bind(UserDAO.class).to(MOOCUserDAO.class);
    config.set(UserFile.class).to(new File("data/users.csv"));

    // use the TF-IDF scorer you will implement to score items
    config.bind(ItemScorer.class).to(TFIDFItemScorer.class);
    return config;
  }