/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link TableModificationRel}. */ public TrimResult trimFields( TableModificationRel modifier, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { // Ignore what consumer wants. We always project all columns. Util.discard(fieldsUsed); final RelDataType rowType = modifier.getRowType(); final int fieldCount = rowType.getFieldCount(); RelNode input = modifier.getChild(); // We want all fields from the child. final int inputFieldCount = input.getRowType().getFieldCount(); BitSet inputFieldsUsed = Util.bitSetBetween(0, inputFieldCount); // Create input with trimmed columns. final Set<RelDataTypeField> inputExtraFields = Collections.emptySet(); TrimResult trimResult = trimChild(modifier, input, inputFieldsUsed, inputExtraFields); RelNode newInput = trimResult.left; final Mapping inputMapping = trimResult.right; if (!inputMapping.isIdentity()) { // We asked for all fields. Can't believe that the child decided // to permute them! throw Util.newInternal("Expected identity mapping, got " + inputMapping); } TableModificationRel newModifier = modifier; if (newInput != input) { newModifier = modifier.copy(modifier.getTraitSet(), Collections.singletonList(newInput)); } assert newModifier.getClass() == modifier.getClass(); // Always project all fields. Mapping mapping = Mappings.createIdentity(fieldCount); return new TrimResult(newModifier, mapping); }
/** * Creates a relational expression which projects an array of expressions, and optionally * optimizes. * * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code> * is returned directly; and future versions may return other formulations of expressions, such as * {@link CalcRel}. * * @param child input relational expression * @param exprs list of expressions for the input columns * @param fieldNames aliases of the expressions, or null to generate * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial. */ public static RelNode createProject( RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) { final RelOptCluster cluster = child.getCluster(); final RexProgram program = RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder()); final List<RelCollation> collationList = program.getCollations(child.getCollationList()); if (DEPRECATE_PROJECT_AND_FILTER) { return new CalcRel( cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList); } else { final RelDataType rowType = RexUtil.createStructType( cluster.getTypeFactory(), exprs, fieldNames == null ? null : SqlValidatorUtil.uniquify(fieldNames, SqlValidatorUtil.F_SUGGESTER)); if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) { return child; } return new ProjectRel( cluster, cluster.traitSetOf( collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)), child, exprs, rowType, ProjectRelBase.Flags.BOXED); } }
/** * Creates a relational expression which projects an array of expressions, and optionally * optimizes. * * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code> * is returned directly; and future versions may return other formulations of expressions, such as * {@link CalcRel}. * * @param child input relational expression * @param exprs list of expressions for the input columns * @param fieldNames aliases of the expressions, or null to generate * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial. */ public static RelNode createProject( RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) { final RelOptCluster cluster = child.getCluster(); final RexProgram program = RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder()); final List<RelCollation> collationList = program.getCollations(child.getCollationList()); if (DeprecateProjectAndFilter) { return new CalcRel( cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList); } else { final RelDataType rowType = RexUtil.createStructType(cluster.getTypeFactory(), exprs, fieldNames); if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) { return child; } return new ProjectRel( cluster, cluster.traitSetOf( collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)), child, exprs, rowType, ProjectRelBase.Flags.Boxed); } }
/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link TableFunctionRel}. */ public TrimResult trimFields( TableFunctionRel tabFun, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final RelDataType rowType = tabFun.getRowType(); final int fieldCount = rowType.getFieldCount(); List<RelNode> newInputs = new ArrayList<RelNode>(); for (RelNode input : tabFun.getInputs()) { final int inputFieldCount = input.getRowType().getFieldCount(); BitSet inputFieldsUsed = Util.bitSetBetween(0, inputFieldCount); // Create input with trimmed columns. final Set<RelDataTypeField> inputExtraFields = Collections.emptySet(); TrimResult trimResult = trimChildRestore(tabFun, input, inputFieldsUsed, inputExtraFields); assert trimResult.right.isIdentity(); newInputs.add(trimResult.left); } TableFunctionRel newTabFun = tabFun; if (!tabFun.getInputs().equals(newInputs)) { newTabFun = tabFun.copy(tabFun.getTraitSet(), newInputs); } assert newTabFun.getClass() == tabFun.getClass(); // Always project all fields. Mapping mapping = Mappings.createIdentity(fieldCount); return new TrimResult(newTabFun, mapping); }
/** * Trims the fields of an input relational expression. * * @param rel Relational expression * @param input Input relational expression, whose fields to trim * @param fieldsUsed Bitmap of fields needed by the consumer * @return New relational expression and its field mapping */ protected TrimResult trimChild( RelNode rel, RelNode input, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { Util.discard(rel); if (input.getClass().getName().endsWith("MedMdrClassExtentRel")) { // MedMdrJoinRule cannot handle Join of Project of // MedMdrClassExtentRel, only naked MedMdrClassExtentRel. // So, disable trimming. fieldsUsed = Util.bitSetBetween(0, input.getRowType().getFieldCount()); } return dispatchTrimFields(input, fieldsUsed, extraFields); }
private List<Object> explainInputs(List<RelNode> inputs) { final List<Object> list = jsonBuilder.list(); for (RelNode input : inputs) { String id = relIdMap.get(input); if (id == null) { input.explain(this); id = previousId; } list.add(id); } return list; }
/** * Returns the index of the first field in <code>rel</code> which comes from its <code>ordinal * </code>th input. * * <p>For example, if rel joins T0(A,B,C) to T1(D,E), then countFields(0,rel) yields 0, and * countFields(1,rel) yields 3. */ private int computeFieldOffset(RelNode rel, int ordinal) { if (ordinal == 0) { // short-circuit for the common case return 0; } int fieldOffset = 0; final List<RelNode> inputs = rel.getInputs(); for (int i = 0; i < ordinal; i++) { RelNode input = inputs.get(i); fieldOffset += input.getRowType().getFieldList().size(); } return fieldOffset; }
public void onMatch(RelOptRuleCall call) { assert matches(call); final JoinRel join = (JoinRel) call.rels[0]; final List<Integer> leftKeys = new ArrayList<Integer>(); final List<Integer> rightKeys = new ArrayList<Integer>(); RelNode right = join.getRight(); final RelNode left = join.getLeft(); RexNode remainingCondition = RelOptUtil.splitJoinCondition(left, right, join.getCondition(), leftKeys, rightKeys); assert leftKeys.size() == rightKeys.size(); final List<CorrelatorRel.Correlation> correlationList = new ArrayList<CorrelatorRel.Correlation>(); if (leftKeys.size() > 0) { final RelOptCluster cluster = join.getCluster(); final RexBuilder rexBuilder = cluster.getRexBuilder(); int k = 0; RexNode condition = null; for (Integer leftKey : leftKeys) { Integer rightKey = rightKeys.get(k++); final String dyn_inIdStr = cluster.getQuery().createCorrel(); final int dyn_inId = RelOptQuery.getCorrelOrdinal(dyn_inIdStr); // Create correlation to say 'each row, set variable #id // to the value of column #leftKey'. correlationList.add(new CorrelatorRel.Correlation(dyn_inId, leftKey)); condition = RelOptUtil.andJoinFilters( rexBuilder, condition, rexBuilder.makeCall( SqlStdOperatorTable.equalsOperator, rexBuilder.makeInputRef( right.getRowType().getFieldList().get(rightKey).getType(), rightKey), rexBuilder.makeCorrel( left.getRowType().getFieldList().get(leftKey).getType(), dyn_inIdStr))); } right = CalcRel.createFilter(right, condition); } RelNode newRel = new CorrelatorRel( join.getCluster(), left, right, remainingCondition, correlationList, join.getJoinType()); call.transformTo(newRel); }
@Override public ParseTree visitChildInternal(RelNode child, int ordinal) { final Convention convention = child.getConvention(); if (!(child instanceof JavaRel)) { throw Util.newInternal( "Relational expression '" + child + "' has '" + convention + "' calling convention, so must implement interface " + JavaRel.class); } JavaRel javaRel = (JavaRel) child; final ParseTree p = javaRel.implement(this); if ((convention == CallingConvention.JAVA) && (p != null)) { throw Util.newInternal( "Relational expression '" + child + "' returned '" + p + " on implement, but should have " + "returned null, because it has JAVA calling-convention. " + "(Note that similar calling-conventions, such as " + "Iterator, must return a value.)"); } return p; }
private void bindDeferred(JavaFrame frame, final RelNode rel) { final StatementList statementList = getStatementList(); if (frame.bind == null) { // this relational expression has not bound itself, so we presume // that we can call its implementSelf() method if (!(rel instanceof JavaSelfRel)) { throw Util.newInternal( "In order to bind-deferred, a " + "relational expression must implement JavaSelfRel: " + rel); } final JavaSelfRel selfRel = (JavaSelfRel) rel; LazyBind lazyBind = new LazyBind( newVariable(), statementList, getTypeFactory(), rel.getRowType(), new VariableInitializerThunk() { public VariableInitializer getInitializer() { return selfRel.implementSelf(JavaRelImplementor.this); } }); bind(rel, lazyBind); } else if ((frame.bind instanceof LazyBind) && (((LazyBind) frame.bind).statementList != statementList)) { // Frame is already bound, but to a variable declared in a different // scope. Re-bind it. final LazyBind lazyBind = (LazyBind) frame.bind; lazyBind.statementList = statementList; lazyBind.bound = false; } }
private JavaFrame findFrame() { RelNode previous = rel; while (true) { JavaFrame frame = (JavaFrame) mapRel2Frame.get(previous); if (frame.bind != null) { tracer.log( Level.FINE, "Bind " + rel.toString() + " to " + previous.toString() + "(" + frame.bind + ")"); return frame; } // go deeper List<RelNode> inputs = previous.getInputs(); assert (inputs.size() == 1) : "input is not bound"; previous = inputs.get(0); } }
/** * Trims unused fields from a relational expression. * * <p>We presume that all fields of the relational expression are wanted by its consumer, so only * trim fields that are not used within the tree. * * @param root Root node of relational expression * @return Trimmed relational expression */ public RelNode trim(RelNode root) { final int fieldCount = root.getRowType().getFieldCount(); final BitSet fieldsUsed = Util.bitSetBetween(0, fieldCount); final Set<RelDataTypeField> extraFields = Collections.emptySet(); final TrimResult trimResult = dispatchTrimFields(root, fieldsUsed, extraFields); if (!trimResult.right.isIdentity()) { throw new IllegalArgumentException(); } return trimResult.left; }
/** * Creates a relational expression which filters according to a given condition, returning the * same fields as its input. * * @param child Child relational expression * @param condition Condition * @return Relational expression */ public static RelNode createFilter(RelNode child, RexNode condition) { if (DeprecateProjectAndFilter) { final RelOptCluster cluster = child.getCluster(); RexProgramBuilder builder = new RexProgramBuilder(child.getRowType(), cluster.getRexBuilder()); builder.addIdentity(); builder.addCondition(condition); final RexProgram program = builder.getProgram(); return new CalcRel( cluster, child.getTraitSet(), child, program.getOutputRowType(), program, Collections.<RelCollation>emptyList()); } else { return new FilterRel(child.getCluster(), child, condition); } }
/** * Records the fact that instances of <code>rel</code> are available via <code>bind</code> (which * may be eager or lazy). */ private void bind(RelNode rel, Bind bind) { tracer.log(Level.FINE, "Bind " + rel.toString() + " to " + bind); JavaFrame frame = (JavaFrame) mapRel2Frame.get(rel); frame.bind = bind; boolean stupid = SaffronProperties.instance().stupid.get(); if (stupid) { // trigger the declaration of the variable, even though it // may not be used Util.discard(bind.getVariable()); } }
/** * Invokes {@link #trimFields}, or the appropriate method for the type of the rel parameter, using * multi-method dispatch. * * @param rel Relational expression * @param fieldsUsed Bitmap of fields needed by the consumer * @return New relational expression and its field mapping */ protected final TrimResult dispatchTrimFields( RelNode rel, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final TrimResult trimResult = trimFieldsDispatcher.invoke(rel, fieldsUsed, extraFields); final RelNode newRel = trimResult.left; final Mapping mapping = trimResult.right; final int fieldCount = rel.getRowType().getFieldCount(); assert mapping.getSourceCount() == fieldCount : "source: " + mapping.getSourceCount() + " != " + fieldCount; final int newFieldCount = newRel.getRowType().getFieldCount(); assert mapping.getTargetCount() + extraFields.size() == newFieldCount : "target: " + mapping.getTargetCount() + " + " + extraFields.size() + " != " + newFieldCount; if (Bug.TodoFixed) assert newFieldCount > 0 : "rel has no fields after trim: " + rel; if (newRel.equals(rel)) { return new TrimResult(rel, mapping); } return trimResult; }
/** * Returns the variable which, in the generated program, will hold the current row of a given * relational expression. This method is only applicable if the relational expression is the * current one or an input; if it is an ancestor, there is no current value, and this method * returns null. */ public Variable findInputVariable(RelNode rel) { while (true) { JavaFrame frame = (JavaFrame) mapRel2Frame.get(rel); if ((frame != null) && frame.hasVariable()) { return frame.getVariable(); } List<RelNode> inputs = rel.getInputs(); if (inputs.size() == 1) { rel = inputs.get(0); } else { return null; } } }
/** * Trims a child relational expression, then adds back a dummy project to restore the fields that * were removed. * * <p>Sounds pointless? It causes unused fields to be removed further down the tree (towards the * leaves), but it ensure that the consuming relational expression continues to see the same * fields. * * @param rel Relational expression * @param input Input relational expression, whose fields to trim * @param fieldsUsed Bitmap of fields needed by the consumer * @return New relational expression and its field mapping */ protected TrimResult trimChildRestore( RelNode rel, RelNode input, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { TrimResult trimResult = trimChild(rel, input, fieldsUsed, extraFields); if (trimResult.right.isIdentity()) { return trimResult; } final RelDataType rowType = input.getRowType(); List<RelDataTypeField> fieldList = rowType.getFieldList(); final List<RexNode> exprList = new ArrayList<RexNode>(); final List<String> nameList = rowType.getFieldNames(); RexBuilder rexBuilder = rel.getCluster().getRexBuilder(); assert trimResult.right.getSourceCount() == fieldList.size(); for (int i = 0; i < fieldList.size(); i++) { int source = trimResult.right.getTargetOpt(i); RelDataTypeField field = fieldList.get(i); exprList.add( source < 0 ? rexBuilder.makeZeroLiteral(field.getType()) : rexBuilder.makeInputRef(field.getType(), source)); } RelNode project = CalcRel.createProject(trimResult.left, exprList, nameList); return new TrimResult(project, Mappings.createIdentity(fieldList.size())); }
/** * Declares a variable, and binds it lazily, so it only gets initialized if it is actually used. * * @return the Variable so declared */ public Variable bind( RelNode rel, StatementList statementList, final VariableInitializer initializer) { VariableInitializerThunk thunk = new VariableInitializerThunk() { public VariableInitializer getInitializer() { return initializer; } }; Variable variable = newVariable(); LazyBind bind = new LazyBind(variable, statementList, getTypeFactory(), rel.getRowType(), thunk); bind(rel, bind); return bind.getVariable(); }
/** * Returns a relational expression which has the same fields as the underlying expression, but the * fields have different names. * * @param rel Relational expression * @param fieldNames Field names * @return Renamed relational expression */ public static RelNode createRename(RelNode rel, List<String> fieldNames) { final List<RelDataTypeField> fields = rel.getRowType().getFieldList(); assert fieldNames.size() == fields.size(); final List<Pair<RexNode, String>> refs = new AbstractList<Pair<RexNode, String>>() { public int size() { return fields.size(); } public Pair<RexNode, String> get(int index) { return RexInputRef.of2(index, fields); } }; return createProject(rel, refs, true); }
protected void explain_(RelNode rel, List<Pair<String, Object>> values) { final Map<String, Object> map = jsonBuilder.map(); map.put("id", null); // ensure that id is the first attribute map.put("relOp", relJson.classToTypeName(rel.getClass())); for (Pair<String, Object> value : values) { if (value.right instanceof RelNode) { continue; } put(map, value.left, value.right); } // omit 'inputs: ["3"]' if "3" is the preceding rel final List<Object> list = explainInputs(rel.getInputs()); if (list.size() != 1 || !list.get(0).equals(previousId)) { map.put("inputs", list); } final String id = Integer.toString(relIdMap.size()); relIdMap.put(rel, id); map.put("id", id); relList.add(map); previousId = id; }
/** * Creates a relational expression which permutes the output fields of a relational expression * according to a permutation. * * <p>Optimizations: * * <ul> * <li>If the relational expression is a {@link CalcRel} or {@link ProjectRel} which is already * acting as a permutation, combines the new permutation with the old; * <li>If the permutation is the identity, returns the original relational expression. * </ul> * * <p>If a permutation is combined with its inverse, these optimizations would combine to remove * them both. * * @param rel Relational expression * @param permutation Permutation to apply to fields * @param fieldNames Field names; if null, or if a particular entry is null, the name of the * permuted field is used * @return relational expression which permutes its input fields */ public static RelNode permute(RelNode rel, Permutation permutation, List<String> fieldNames) { if (permutation.isIdentity()) { return rel; } if (rel instanceof CalcRel) { CalcRel calcRel = (CalcRel) rel; Permutation permutation1 = calcRel.getProgram().getPermutation(); if (permutation1 != null) { Permutation permutation2 = permutation.product(permutation1); return permute(rel, permutation2, null); } } if (rel instanceof ProjectRel) { Permutation permutation1 = ((ProjectRel) rel).getPermutation(); if (permutation1 != null) { Permutation permutation2 = permutation.product(permutation1); return permute(rel, permutation2, null); } } final List<RelDataType> outputTypeList = new ArrayList<RelDataType>(); final List<String> outputNameList = new ArrayList<String>(); final List<RexNode> exprList = new ArrayList<RexNode>(); final List<RexLocalRef> projectRefList = new ArrayList<RexLocalRef>(); final List<RelDataTypeField> fields = rel.getRowType().getFieldList(); for (int i = 0; i < permutation.getTargetCount(); i++) { int target = permutation.getTarget(i); final RelDataTypeField targetField = fields.get(target); outputTypeList.add(targetField.getType()); outputNameList.add( ((fieldNames == null) || (fieldNames.size() <= i) || (fieldNames.get(i) == null)) ? targetField.getName() : fieldNames.get(i)); exprList.add(rel.getCluster().getRexBuilder().makeInputRef(fields.get(i).getType(), i)); final int source = permutation.getSource(i); projectRefList.add(new RexLocalRef(source, fields.get(source).getType())); } final RexProgram program = new RexProgram( rel.getRowType(), exprList, projectRefList, null, rel.getCluster().getTypeFactory().createStructType(outputTypeList, outputNameList)); return new CalcRel( rel.getCluster(), rel.getTraitSet(), rel, program.getOutputRowType(), program, Collections.<RelCollation>emptyList()); }
/** * Creates a relational expression which projects the output fields of a relational expression * according to a partial mapping. * * <p>A partial mapping is weaker than a permutation: every target has one source, but a source * may have 0, 1 or more than one targets. Usually the result will have fewer fields than the * source, unless some source fields are projected multiple times. * * <p>This method could optimize the result as {@link #permute} does, but does not at present. * * @param rel Relational expression * @param mapping Mapping from source fields to target fields. The mapping type must obey the * constaints {@link MappingType#isMandatorySource()} and {@link * MappingType#isSingleSource()}, as does {@link MappingType#InverseFunction}. * @param fieldNames Field names; if null, or if a particular entry is null, the name of the * permuted field is used * @return relational expression which projects a subset of the input fields */ public static RelNode projectMapping(RelNode rel, Mapping mapping, List<String> fieldNames) { assert mapping.getMappingType().isSingleSource(); assert mapping.getMappingType().isMandatorySource(); if (mapping.isIdentity()) { return rel; } final List<RelDataType> outputTypeList = new ArrayList<RelDataType>(); final List<String> outputNameList = new ArrayList<String>(); final List<RexNode> exprList = new ArrayList<RexNode>(); final List<RexLocalRef> projectRefList = new ArrayList<RexLocalRef>(); final List<RelDataTypeField> fields = rel.getRowType().getFieldList(); for (int i = 0; i < fields.size(); i++) { final RelDataTypeField field = fields.get(i); exprList.add(rel.getCluster().getRexBuilder().makeInputRef(field.getType(), i)); } for (int i = 0; i < mapping.getTargetCount(); i++) { int source = mapping.getSource(i); final RelDataTypeField sourceField = fields.get(source); outputTypeList.add(sourceField.getType()); outputNameList.add( ((fieldNames == null) || (fieldNames.size() <= i) || (fieldNames.get(i) == null)) ? sourceField.getName() : fieldNames.get(i)); projectRefList.add(new RexLocalRef(source, sourceField.getType())); } final RexProgram program = new RexProgram( rel.getRowType(), exprList, projectRefList, null, rel.getCluster().getTypeFactory().createStructType(outputTypeList, outputNameList)); return new CalcRel( rel.getCluster(), rel.getTraitSet(), rel, program.getOutputRowType(), program, Collections.<RelCollation>emptyList()); }
static FarragoSession getSession(RelNode rel) { FarragoSessionPlanner planner = (FarragoSessionPlanner) rel.getCluster().getPlanner(); FarragoSessionPreparingStmt preparingStmt = planner.getPreparingStmt(); return preparingStmt.getSession(); }
/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link ProjectRel}. */ public TrimResult trimFields( ProjectRel project, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final RelDataType rowType = project.getRowType(); final int fieldCount = rowType.getFieldCount(); final RelNode input = project.getChild(); final RelDataType inputRowType = input.getRowType(); // Which fields are required from the input? BitSet inputFieldsUsed = new BitSet(inputRowType.getFieldCount()); final Set<RelDataTypeField> inputExtraFields = new LinkedHashSet<RelDataTypeField>(extraFields); RelOptUtil.InputFinder inputFinder = new RelOptUtil.InputFinder(inputFieldsUsed, inputExtraFields); for (Ord<RexNode> ord : Ord.zip(project.getProjects())) { if (fieldsUsed.get(ord.i)) { ord.e.accept(inputFinder); } } // Create input with trimmed columns. TrimResult trimResult = trimChild(project, input, inputFieldsUsed, inputExtraFields); RelNode newInput = trimResult.left; final Mapping inputMapping = trimResult.right; // If the input is unchanged, and we need to project all columns, // there's nothing we can do. if (newInput == input && fieldsUsed.cardinality() == fieldCount) { return new TrimResult(project, Mappings.createIdentity(fieldCount)); } // Some parts of the system can't handle rows with zero fields, so // pretend that one field is used. if (fieldsUsed.cardinality() == 0) { final Mapping mapping = Mappings.create(MappingType.InverseSurjection, fieldCount, 1); final RexLiteral expr = project.getCluster().getRexBuilder().makeExactLiteral(BigDecimal.ZERO); RelDataType newRowType = project .getCluster() .getTypeFactory() .createStructType( Collections.singletonList(expr.getType()), Collections.singletonList("DUMMY")); ProjectRel newProject = new ProjectRel( project.getCluster(), project.getCluster().traitSetOf(RelCollationImpl.EMPTY), newInput, Collections.<RexNode>singletonList(expr), newRowType, project.getFlags()); return new TrimResult(newProject, mapping); } // Build new project expressions, and populate the mapping. List<RexNode> newProjectExprList = new ArrayList<RexNode>(); final RexVisitor<RexNode> shuttle = new RexPermuteInputsShuttle(inputMapping, newInput); final Mapping mapping = Mappings.create(MappingType.InverseSurjection, fieldCount, fieldsUsed.cardinality()); for (Ord<RexNode> ord : Ord.zip(project.getProjects())) { if (fieldsUsed.get(ord.i)) { mapping.set(ord.i, newProjectExprList.size()); RexNode newProjectExpr = ord.e.accept(shuttle); newProjectExprList.add(newProjectExpr); } } final RelDataType newRowType = project .getCluster() .getTypeFactory() .createStructType(Mappings.apply3(mapping, rowType.getFieldList())); final List<RelCollation> newCollations = RexUtil.apply(inputMapping, project.getCollationList()); final RelNode newProject; if (RemoveTrivialProjectRule.isIdentity( newProjectExprList, newRowType, newInput.getRowType())) { // The new project would be the identity. It is equivalent to return // its child. newProject = newInput; } else { newProject = new ProjectRel( project.getCluster(), project .getCluster() .traitSetOf( newCollations.isEmpty() ? RelCollationImpl.EMPTY : newCollations.get(0)), newInput, newProjectExprList, newRowType, project.getFlags()); assert newProject.getClass() == project.getClass(); } return new TrimResult(newProject, mapping); }
/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link JoinRel}. */ public TrimResult trimFields(JoinRel join, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final RelDataType rowType = join.getRowType(); final int fieldCount = rowType.getFieldCount(); final RexNode conditionExpr = join.getCondition(); final int systemFieldCount = join.getSystemFieldList().size(); // Add in fields used in the condition. BitSet fieldsUsedPlus = (BitSet) fieldsUsed.clone(); final Set<RelDataTypeField> combinedInputExtraFields = new LinkedHashSet<RelDataTypeField>(extraFields); RelOptUtil.InputFinder inputFinder = new RelOptUtil.InputFinder(fieldsUsedPlus, combinedInputExtraFields); conditionExpr.accept(inputFinder); // If no system fields are used, we can remove them. int systemFieldUsedCount = 0; for (int i = 0; i < systemFieldCount; ++i) { if (fieldsUsed.get(i)) { ++systemFieldUsedCount; } } final int newSystemFieldCount; if (systemFieldUsedCount == 0) { newSystemFieldCount = 0; } else { newSystemFieldCount = systemFieldCount; } int offset = systemFieldCount; int changeCount = 0; int newFieldCount = newSystemFieldCount; List<RelNode> newInputs = new ArrayList<RelNode>(2); List<Mapping> inputMappings = new ArrayList<Mapping>(); List<Integer> inputExtraFieldCounts = new ArrayList<Integer>(); for (RelNode input : join.getInputs()) { final RelDataType inputRowType = input.getRowType(); final int inputFieldCount = inputRowType.getFieldCount(); // Compute required mapping. BitSet inputFieldsUsed = new BitSet(inputFieldCount); for (int bit : Util.toIter(fieldsUsedPlus)) { if (bit >= offset && bit < offset + inputFieldCount) { inputFieldsUsed.set(bit - offset); } } // If there are system fields, we automatically use the // corresponding field in each input. if (newSystemFieldCount > 0) { // calling with newSystemFieldCount == 0 should be safe but hits // http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6222207 inputFieldsUsed.set(0, newSystemFieldCount); } // FIXME: We ought to collect extra fields for each input // individually. For now, we assume that just one input has // on-demand fields. Set<RelDataTypeField> inputExtraFields = input.getRowType().getField("_extra") == null ? Collections.<RelDataTypeField>emptySet() : combinedInputExtraFields; inputExtraFieldCounts.add(inputExtraFields.size()); TrimResult trimResult = trimChild(join, input, inputFieldsUsed, inputExtraFields); newInputs.add(trimResult.left); if (trimResult.left != input) { ++changeCount; } final Mapping inputMapping = trimResult.right; inputMappings.add(inputMapping); // Move offset to point to start of next input. offset += inputFieldCount; newFieldCount += inputMapping.getTargetCount() + inputExtraFields.size(); } Mapping mapping = Mappings.create(MappingType.InverseSurjection, fieldCount, newFieldCount); for (int i = 0; i < newSystemFieldCount; ++i) { mapping.set(i, i); } offset = systemFieldCount; int newOffset = newSystemFieldCount; for (int i = 0; i < inputMappings.size(); i++) { Mapping inputMapping = inputMappings.get(i); for (IntPair pair : inputMapping) { mapping.set(pair.source + offset, pair.target + newOffset); } offset += inputMapping.getSourceCount(); newOffset += inputMapping.getTargetCount() + inputExtraFieldCounts.get(i); } if (changeCount == 0 && mapping.isIdentity()) { return new TrimResult(join, Mappings.createIdentity(fieldCount)); } // Build new join. final RexVisitor<RexNode> shuttle = new RexPermuteInputsShuttle(mapping, newInputs.get(0), newInputs.get(1)); RexNode newConditionExpr = conditionExpr.accept(shuttle); final JoinRel newJoin = join.copy(join.getTraitSet(), newConditionExpr, newInputs.get(0), newInputs.get(1)); return new TrimResult(newJoin, mapping); }
/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link AggregateRel}. */ public TrimResult trimFields( AggregateRel aggregate, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { // Fields: // // | sys fields | group fields | agg functions | // // Two kinds of trimming: // // 1. If agg rel has system fields but none of these are used, create an // agg rel with no system fields. // // 2. If aggregate functions are not used, remove them. // // But grouping fields stay, even if they are not used. final RelDataType rowType = aggregate.getRowType(); // Compute which input fields are used. BitSet inputFieldsUsed = new BitSet(); // 1. group fields are always used for (int i : Util.toIter(aggregate.getGroupSet())) { inputFieldsUsed.set(i); } // 2. agg functions for (AggregateCall aggCall : aggregate.getAggCallList()) { for (int i : aggCall.getArgList()) { inputFieldsUsed.set(i); } } // Create input with trimmed columns. final RelNode input = aggregate.getInput(0); final Set<RelDataTypeField> inputExtraFields = Collections.emptySet(); final TrimResult trimResult = trimChild(aggregate, input, inputFieldsUsed, inputExtraFields); final RelNode newInput = trimResult.left; final Mapping inputMapping = trimResult.right; // If the input is unchanged, and we need to project all columns, // there's nothing to do. if (input == newInput && fieldsUsed.equals(Util.bitSetBetween(0, rowType.getFieldCount()))) { return new TrimResult(aggregate, Mappings.createIdentity(rowType.getFieldCount())); } // Which agg calls are used by our consumer? final int groupCount = aggregate.getGroupSet().cardinality(); int j = groupCount; int usedAggCallCount = 0; for (int i = 0; i < aggregate.getAggCallList().size(); i++) { if (fieldsUsed.get(j++)) { ++usedAggCallCount; } } // Offset due to the number of system fields having changed. Mapping mapping = Mappings.create( MappingType.InverseSurjection, rowType.getFieldCount(), groupCount + usedAggCallCount); final BitSet newGroupSet = Mappings.apply(inputMapping, aggregate.getGroupSet()); // Populate mapping of where to find the fields. System and grouping // fields first. for (IntPair pair : inputMapping) { if (pair.source < groupCount) { mapping.set(pair.source, pair.target); } } // Now create new agg calls, and populate mapping for them. final List<AggregateCall> newAggCallList = new ArrayList<AggregateCall>(); j = groupCount; for (AggregateCall aggCall : aggregate.getAggCallList()) { if (fieldsUsed.get(j)) { AggregateCall newAggCall = new AggregateCall( aggCall.getAggregation(), aggCall.isDistinct(), Mappings.apply2(inputMapping, aggCall.getArgList()), aggCall.getType(), aggCall.getName()); if (newAggCall.equals(aggCall)) { newAggCall = aggCall; // immutable -> canonize to save space } mapping.set(j, groupCount + newAggCallList.size()); newAggCallList.add(newAggCall); } ++j; } RelNode newAggregate = new AggregateRel(aggregate.getCluster(), newInput, newGroupSet, newAggCallList); assert newAggregate.getClass() == aggregate.getClass(); return new TrimResult(newAggregate, mapping); }
/** * Visit method, per {@link org.eigenbase.util.ReflectiveVisitor}. * * <p>This method is invoked reflectively, so there may not be any apparent calls to it. The class * (or derived classes) may contain overloads of this method with more specific types for the * {@code rel} parameter. * * <p>Returns a pair: the relational expression created, and the mapping between the original * fields and the fields of the newly created relational expression. * * @param rel Relational expression * @param fieldsUsed Fields needed by the consumer * @return relational expression and mapping */ public TrimResult trimFields(RelNode rel, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { // We don't know how to trim this kind of relational expression, so give // it back intact. Util.discard(fieldsUsed); return new TrimResult(rel, Mappings.createIdentity(rel.getRowType().getFieldCount())); }
/** * Reduces a list of expressions. * * @param rel Relational expression * @param expList List of expressions, modified in place * @return whether reduction found something to change, and succeeded */ static boolean reduceExpressions(RelNode rel, List<RexNode> expList) { RexBuilder rexBuilder = rel.getCluster().getRexBuilder(); // Find reducible expressions. FarragoSessionPlanner planner = (FarragoSessionPlanner) rel.getCluster().getPlanner(); FarragoSessionPreparingStmt preparingStmt = planner.getPreparingStmt(); List<RexNode> constExps = new ArrayList<RexNode>(); List<Boolean> addCasts = new ArrayList<Boolean>(); List<RexNode> removableCasts = new ArrayList<RexNode>(); findReducibleExps(preparingStmt, expList, constExps, addCasts, removableCasts); if (constExps.isEmpty() && removableCasts.isEmpty()) { return false; } // Remove redundant casts before reducing constant expressions. // If the argument to the redundant cast is a reducible constant, // reducing that argument to a constant first will result in not being // able to locate the original cast expression. if (!removableCasts.isEmpty()) { List<RexNode> reducedExprs = new ArrayList<RexNode>(); List<Boolean> noCasts = new ArrayList<Boolean>(); for (RexNode exp : removableCasts) { RexCall call = (RexCall) exp; reducedExprs.add(call.getOperands()[0]); noCasts.add(false); } RexReplacer replacer = new RexReplacer(rexBuilder, removableCasts, reducedExprs, noCasts); replacer.apply(expList); } if (constExps.isEmpty()) { return true; } // Compute the values they reduce to. List<RexNode> reducedValues = new ArrayList<RexNode>(); ReentrantValuesStmt reentrantStmt = new ReentrantValuesStmt( preparingStmt.getRootStmtContext(), rexBuilder, constExps, reducedValues); FarragoSession session = getSession(rel); reentrantStmt.execute(session, true); if (reentrantStmt.failed) { return false; } // For ProjectRel, we have to be sure to preserve the result // types, so always cast regardless of the expression type. // For other RelNodes like FilterRel, in general, this isn't necessary, // and the presence of casts could hinder other rules such as sarg // analysis, which require bare literals. But there are special cases, // like when the expression is a UDR argument, that need to be // handled as special cases. if (rel instanceof ProjectRel) { for (int i = 0; i < reducedValues.size(); i++) { addCasts.set(i, true); } } RexReplacer replacer = new RexReplacer(rexBuilder, constExps, reducedValues, addCasts); replacer.apply(expList); return true; }