/** * It calculates PCBLX * * @param d it multiplies the module of the difference of the parents * @param P1 it is a father to cross * @param P2 it is the other father to do the cross * @param Hijo1 the son obtained * @param Hijo2 the other obtained * @param gens the size of the vector */ private void xPC_BLX( double d, double[] P1, double[] P2, double[] Hijo1, double[] Hijo2, int gens) { double I, A1, C1; int i; for (i = 0; i < gens; i++) { I = d * Math.abs(P1[i] - P2[i]); A1 = P1[i] - I; if (A1 < Gene[i].min()) A1 = Gene[i].min(); C1 = P1[i] + I; if (C1 > Gene[i].max()) C1 = Gene[i].max(); Hijo1[i] = A1 + Randomize.Rand() * (C1 - A1); A1 = P2[i] - I; if (A1 < Gene[i].min()) A1 = Gene[i].min(); C1 = P2[i] + I; if (C1 > Gene[i].max()) C1 = Gene[i].max(); Hijo2[i] = A1 + Randomize.Rand() * (C1 - A1); } }
/** * This method runs the multiple comparison tests * * @param code A value to codify which post-hoc methods apply * @param results Array with the results of the methods * @param algorithmName Array with the name of the methods employed * @return A string with the contents of the test in LaTeX format */ private static String runMultiple(double[][] results, String algorithmName[]) { int i, j, k; int posicion; double mean[][]; MultiplePair orden[][]; MultiplePair rank[][]; boolean encontrado; int ig; double sum; boolean visto[]; Vector<Integer> porVisitar; double Rj[]; double friedman; double sumatoria = 0; double termino1, termino2, termino3; double iman; boolean vistos[]; int pos, tmp, counter; String cad; double maxVal; double Pi[]; double ALPHAiHolm[]; double ALPHAiShaffer[]; String ordenAlgoritmos[]; double ordenRankings[]; int order[]; double adjustedP[][]; double SE; boolean parar; Vector<Integer> indices = new Vector<Integer>(); Vector<Vector<Relation>> exhaustiveI = new Vector<Vector<Relation>>(); boolean[][] cuadro; double minPi, tmpPi, maxAPi, tmpAPi; Relation[] parejitas; Vector<Integer> T; int Tarray[]; DecimalFormat nf4 = (DecimalFormat) DecimalFormat.getInstance(); nf4.setMaximumFractionDigits(4); nf4.setMinimumFractionDigits(0); DecimalFormatSymbols dfs = nf4.getDecimalFormatSymbols(); dfs.setDecimalSeparator('.'); nf4.setDecimalFormatSymbols(dfs); DecimalFormat nf6 = (DecimalFormat) DecimalFormat.getInstance(); nf6.setMaximumFractionDigits(6); nf6.setMinimumFractionDigits(0); nf6.setDecimalFormatSymbols(dfs); String out = ""; int nDatasets = Configuration.getNDatasets(); Iman = Configuration.isIman(); Nemenyi = Configuration.isNemenyi(); Bonferroni = Configuration.isBonferroni(); Holm = Configuration.isHolm(); Hoch = Configuration.isHochberg(); Hommel = Configuration.isHommel(); Scha = Configuration.isShaffer(); Berg = Configuration.isBergman(); mean = new double[nDatasets][algorithmName.length]; // Maximize performance if (Configuration.getObjective() == 1) { /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] = results[j][i]; } } } // Minimize performance else { double maxValue = Double.MIN_VALUE; /*Compute the average performance per algorithm for each data set*/ for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { if (results[j][i] > maxValue) { maxValue = results[j][i]; } mean[i][j] = (-1.0 * results[j][i]); } } for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { mean[i][j] += maxValue; } } } /*We use the pareja structure to compute and order rankings*/ orden = new MultiplePair[nDatasets][algorithmName.length]; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { orden[i][j] = new MultiplePair(j, mean[i][j]); } Arrays.sort(orden[i]); } /*building of the rankings table per algorithms and data sets*/ rank = new MultiplePair[nDatasets][algorithmName.length]; posicion = 0; for (i = 0; i < nDatasets; i++) { for (j = 0; j < algorithmName.length; j++) { encontrado = false; for (k = 0; k < algorithmName.length && !encontrado; k++) { if (orden[i][k].indice == j) { encontrado = true; posicion = k + 1; } } rank[i][j] = new MultiplePair(posicion, orden[i][posicion - 1].valor); } } /*In the case of having the same performance, the rankings are equal*/ for (i = 0; i < nDatasets; i++) { visto = new boolean[algorithmName.length]; porVisitar = new Vector<Integer>(); Arrays.fill(visto, false); for (j = 0; j < algorithmName.length; j++) { porVisitar.removeAllElements(); sum = rank[i][j].indice; visto[j] = true; ig = 1; for (k = j + 1; k < algorithmName.length; k++) { if (rank[i][j].valor == rank[i][k].valor && !visto[k]) { sum += rank[i][k].indice; ig++; porVisitar.add(new Integer(k)); visto[k] = true; } } sum /= (double) ig; rank[i][j].indice = sum; for (k = 0; k < porVisitar.size(); k++) { rank[i][((Integer) porVisitar.elementAt(k)).intValue()].indice = sum; } } } /*compute the average ranking for each algorithm*/ Rj = new double[algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Rj[i] = 0; for (j = 0; j < nDatasets; j++) { Rj[i] += rank[j][i].indice / ((double) nDatasets); } } /*Print the average ranking per algorithm*/ out += "\n\nAverage ranks obtained by applying the Friedman procedure\n\n"; out += "\\begin{table}[!htp]\n" + "\\centering\n" + "\\begin{tabular}{|c|c|}\\hline\n" + "Algorithm&Ranking\\\\\\hline\n"; for (i = 0; i < algorithmName.length; i++) { out += (String) algorithmName[i] + " & " + nf4.format(Rj[i]) + "\\\\\n"; } out += "\\hline\n\\end{tabular}\n\\caption{Average Rankings of the algorithms}\n\\end{table}"; /*Compute the Friedman statistic*/ termino1 = (12 * (double) nDatasets) / ((double) algorithmName.length * ((double) algorithmName.length + 1)); termino2 = (double) algorithmName.length * ((double) algorithmName.length + 1) * ((double) algorithmName.length + 1) / (4.0); for (i = 0; i < algorithmName.length; i++) { sumatoria += Rj[i] * Rj[i]; } friedman = (sumatoria - termino2) * termino1; out += "\n\nFriedman statistic considering reduction performance (distributed according to chi-square with " + (algorithmName.length - 1) + " degrees of freedom: " + nf6.format(friedman) + ".\n\n"; double pFriedman; pFriedman = ChiSq(friedman, (algorithmName.length - 1)); System.out.print("P-value computed by Friedman Test: " + pFriedman + ".\\newline\n\n"); /*Compute the Iman-Davenport statistic*/ if (Iman) { iman = ((nDatasets - 1) * friedman) / (nDatasets * (algorithmName.length - 1) - friedman); out += "Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with " + (algorithmName.length - 1) + " and " + (algorithmName.length - 1) * (nDatasets - 1) + " degrees of freedom: " + nf6.format(iman) + ".\n\n"; double pIman; pIman = FishF(iman, (algorithmName.length - 1), (algorithmName.length - 1) * (nDatasets - 1)); System.out.print("P-value computed by Iman and Daveport Test: " + pIman + ".\\newline\n\n"); } termino3 = Math.sqrt( (double) algorithmName.length * ((double) algorithmName.length + 1) / (6.0 * (double) nDatasets)); out += "\n\n\\pagebreak\n\n"; /** ********** NxN COMPARISON ************* */ out += "\\section{Post hoc comparisons}"; out += "\n\nResults achieved on post hoc comparisons for $\\alpha = 0.05$, $\\alpha = 0.10$ and adjusted p-values.\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.05*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; parejitas = new Relation[(int) combinatoria(2, algorithmName.length)]; T = new Vector<Integer>(); T = trueHShaffer(algorithmName.length); Tarray = new int[T.size()]; for (i = 0; i < T.size(); i++) { Tarray[i] = ((Integer) T.elementAt(i)).intValue(); } Arrays.sort(Tarray); SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; parejitas[k] = new Relation(i, j); } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.05 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.05 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } out += "\\subsection{P-values for $\\alpha=0.05$}\n\n"; int count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.05$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.05 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > (0.05 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size()))) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; out += "\\subsection{P-values for $\\alpha=0.10$}\n\n"; /*Compute the unadjusted p_i value for each comparison alpha=0.10*/ Pi = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiHolm = new double[(int) combinatoria(2, algorithmName.length)]; ALPHAiShaffer = new double[(int) combinatoria(2, algorithmName.length)]; ordenAlgoritmos = new String[(int) combinatoria(2, algorithmName.length)]; ordenRankings = new double[(int) combinatoria(2, algorithmName.length)]; order = new int[(int) combinatoria(2, algorithmName.length)]; SE = termino3; vistos = new boolean[(int) combinatoria(2, algorithmName.length)]; for (i = 0, k = 0; i < algorithmName.length; i++) { for (j = i + 1; j < algorithmName.length; j++, k++) { ordenRankings[k] = Math.abs(Rj[i] - Rj[j]); ordenAlgoritmos[k] = (String) algorithmName[i] + " vs. " + (String) algorithmName[j]; } } Arrays.fill(vistos, false); for (i = 0; i < ordenRankings.length; i++) { for (j = 0; vistos[j] == true; j++) ; pos = j; maxVal = ordenRankings[j]; for (j = j + 1; j < ordenRankings.length; j++) { if (vistos[j] == false && ordenRankings[j] > maxVal) { pos = j; maxVal = ordenRankings[j]; } } vistos[pos] = true; order[i] = pos; } /*Computing the logically related hypotheses tests (Shaffer and Bergmann-Hommel)*/ pos = 0; tmp = Tarray.length - 1; for (i = 0; i < order.length; i++) { Pi[i] = 2 * CDF_Normal.normp((-1) * Math.abs((ordenRankings[order[i]]) / SE)); ALPHAiHolm[i] = 0.1 / ((double) order.length - (double) i); ALPHAiShaffer[i] = 0.1 / ((double) order.length - (double) Math.max(pos, i)); if (i == pos && Pi[i] <= ALPHAiShaffer[i]) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } } count = 4; if (Holm) { count++; } if (Scha) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "$i$&algorithms&$z=(R_0 - R_i)/SE$&$p$"; if (Holm) { out += "&Holm"; } if (Scha) { out += "&Shaffer"; } out += "\\\\\n\\hline"; for (i = 0; i < order.length; i++) { out += (order.length - i) + "&" + ordenAlgoritmos[order[i]] + "&" + nf6.format(Math.abs((ordenRankings[order[i]]) / SE)) + "&" + nf6.format(Pi[i]); if (Holm) { out += "&" + nf6.format(ALPHAiHolm[i]); } if (Scha) { out += "&" + nf6.format(ALPHAiShaffer[i]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{P-values Table for $\\alpha=0.10$}\n" + "\\end{table}"; /*Compute the rejected hipotheses for each test*/ if (Nemenyi) { out += "Nemenyi's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(0.10 / (double) (order.length)) + "$.\n\n"; } if (Holm) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] > ALPHAiHolm[i]) { out += "Holm's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiHolm[i]) + "$.\n\n"; parar = true; } } } if (Scha) { parar = false; for (i = 0; i < order.length && !parar; i++) { if (Pi[i] <= ALPHAiShaffer[i]) { out += "Shaffer's procedure rejects those hypotheses that have a p-value $\\le" + nf6.format(ALPHAiShaffer[i]) + "$.\n\n"; parar = true; } } } /*For Bergmann-Hommel's procedure, 9 algorithms could suppose intense computation*/ if (algorithmName.length <= MAX_ALGORITHMS) { indices.removeAllElements(); for (i = 0; i < algorithmName.length; i++) { indices.add(new Integer(i)); } exhaustiveI = obtainExhaustive(indices); cuadro = new boolean[algorithmName.length][algorithmName.length]; for (i = 0; i < algorithmName.length; i++) { Arrays.fill(cuadro[i], false); } for (i = 0; i < exhaustiveI.size(); i++) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(0)) .j]) / SE); for (j = 1; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)) .elementAt(j)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } if (minPi > 0.1 / ((double) ((Vector<Relation>) exhaustiveI.elementAt(i)).size())) { for (j = 0; j < ((Vector<Relation>) exhaustiveI.elementAt(i)).size(); j++) { cuadro[((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).i][ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(i)).elementAt(j)).j] = true; } } } if (Berg) { cad = ""; cad += "Bergmann's procedure rejects these hypotheses:\n\n"; cad += "\\begin{itemize}\n\n"; counter = 0; for (i = 0; i < cuadro.length; i++) { for (j = i + 1; j < cuadro.length; j++) { if (cuadro[i][j] == false) { cad += "\\item " + algorithmName[i] + " vs. " + algorithmName[j] + "\n\n"; counter++; } } } cad += "\\end{itemize}\n\n"; if (counter > 0) { out += cad; } else { out += "Bergmann's procedure does not reject any hypotheses.\n\n"; } } } out += "\\pagebreak\n\n"; /** ********** ADJUSTED P-VALUES NxN COMPARISON ************* */ out += "\\subsection{Adjusted p-values}\n\n"; adjustedP = new double[Pi.length][4]; pos = 0; tmp = Tarray.length - 1; for (i = 0; i < adjustedP.length; i++) { adjustedP[i][0] = Pi[i] * (double) (adjustedP.length); adjustedP[i][1] = Pi[i] * (double) (adjustedP.length - i); adjustedP[i][2] = Pi[i] * ((double) adjustedP.length - (double) Math.max(pos, i)); if (i == pos) { tmp--; pos = (int) combinatoria(2, algorithmName.length) - Tarray[tmp]; } if (algorithmName.length <= MAX_ALGORITHMS) { maxAPi = Double.MIN_VALUE; minPi = Double.MAX_VALUE; for (j = 0; j < exhaustiveI.size(); j++) { if (exhaustiveI.elementAt(j).toString().contains(parejitas[order[i]].toString())) { minPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(0)) .j]) / SE); for (k = 1; k < ((Vector<Relation>) exhaustiveI.elementAt(j)).size(); k++) { tmpPi = 2 * CDF_Normal.normp( (-1) * Math.abs( Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .i] - Rj[ ((Relation) ((Vector<Relation>) exhaustiveI.elementAt(j)) .elementAt(k)) .j]) / SE); if (tmpPi < minPi) { minPi = tmpPi; } } tmpAPi = minPi * (double) (((Vector<Relation>) exhaustiveI.elementAt(j)).size()); if (tmpAPi > maxAPi) { maxAPi = tmpAPi; } } } adjustedP[i][3] = maxAPi; } } for (i = 1; i < adjustedP.length; i++) { if (adjustedP[i][1] < adjustedP[i - 1][1]) adjustedP[i][1] = adjustedP[i - 1][1]; if (adjustedP[i][2] < adjustedP[i - 1][2]) adjustedP[i][2] = adjustedP[i - 1][2]; if (adjustedP[i][3] < adjustedP[i - 1][3]) adjustedP[i][3] = adjustedP[i - 1][3]; } count = 3; if (Nemenyi) { count++; } if (Holm) { count++; } if (Scha) { count++; } if (Berg) { count++; } out += "\\begin{table}[!htp]\n\\centering\\scriptsize\n" + "\\begin{tabular}{" + printC(count) + "}\n" + "i&hypothesis&unadjusted $p$"; if (Nemenyi) { out += "&$p_{Neme}$"; } if (Holm) { out += "&$p_{Holm}$"; } if (Scha) { out += "&$p_{Shaf}$"; } if (Berg) { out += "&$p_{Berg}$"; } out += "\\\\\n\\hline"; for (i = 0; i < Pi.length; i++) { out += (i + 1) + "&" + algorithmName[parejitas[order[i]].i] + " vs ." + algorithmName[parejitas[order[i]].j] + "&" + nf6.format(Pi[i]); if (Nemenyi) { out += "&" + nf6.format(adjustedP[i][0]); } if (Holm) { out += "&" + nf6.format(adjustedP[i][1]); } if (Scha) { out += "&" + nf6.format(adjustedP[i][2]); } if (Berg) { out += "&" + nf6.format(adjustedP[i][3]); } out += "\\\\\n"; } out += "\\hline\n" + "\\end{tabular}\n\\caption{Adjusted $p$-values}\n" + "\\end{table}\n\n"; out += "\\end{landscape}\n\\end{document}"; return out; } // end-method
/** It launches the algorithm */ public void execute() { int i, j, k, l; int t; int ele; double prob[]; double aux; double NUmax = 1.5; // used for lineal ranking double NUmin = 0.5; // used for lineal ranking double pos1, pos2; int sel1, sel2; int data[][]; int infoAttr[]; int classData[]; Vector<Rule> contenedor = new Vector<Rule>(); Vector<Rule> conjR = new Vector<Rule>(); Rule tmpRule; Condition tmpCondition[] = new Condition[1]; RuleSet population[]; RuleSet hijo1, hijo2; if (somethingWrong) { // We do not execute the program System.err.println("An error was found, the data-set has numerical values."); System.err.println("Aborting the program"); // We should not use the statement: System.exit(-1); } else { Randomize.setSeed(seed); nClasses = train.getnClasses(); /*Build the nominal data information*/ infoAttr = new int[train.getnInputs()]; for (i = 0; i < infoAttr.length; i++) { infoAttr[i] = train.numberValues(i); } data = new int[train.getnData()][train.getnInputs()]; for (i = 0; i < data.length; i++) { for (j = 0; j < data[i].length; j++) { if (train.isMissing(i, j)) data[i][j] = -1; else data[i][j] = train.valueExample(i, j); } } classData = new int[train.getnData()]; for (i = 0; i < classData.length; i++) { classData[i] = train.getOutputAsInteger(i); } /*Find first-order rules which result interesting*/ for (i = 0; i < nClasses; i++) { for (j = 0; j < infoAttr.length; j++) { for (k = 0; k < infoAttr[j]; k++) { tmpCondition[0] = new Condition(j, k); tmpRule = new Rule(tmpCondition); if (Math.abs(computeAdjustedResidual(data, classData, tmpRule, i)) > 1.96) { if (!contenedor.contains(tmpRule)) { contenedor.add(tmpRule); conjR.add(tmpRule); } } } } } // Construct the Baker selection roulette prob = new double[popSize]; for (j = 0; j < popSize; j++) { aux = (double) (NUmax - NUmin) * ((double) j / (popSize - 1)); prob[j] = (double) (1.0 / (popSize)) * (NUmax - aux); } for (j = 1; j < popSize; j++) prob[j] = prob[j] + prob[j - 1]; /*Steady-State Genetic Algorithm*/ ele = 2; population = new RuleSet[popSize]; while (conjR.size() >= 2) { t = 0; System.out.println("Producing rules of level " + ele); for (i = 0; i < population.length; i++) { population[i] = new RuleSet(conjR); population[i].computeFitness(data, classData, infoAttr, contenedor, nClasses); } Arrays.sort(population); while (t < numGenerations && !population[0].equals(population[popSize - 1])) { System.out.println("Generation " + t); t++; /*Baker's selection*/ pos1 = Randomize.Rand(); pos2 = Randomize.Rand(); for (l = 0; l < popSize && prob[l] < pos1; l++) ; sel1 = l; for (l = 0; l < popSize && prob[l] < pos2; l++) ; sel2 = l; hijo1 = new RuleSet(population[sel1]); hijo2 = new RuleSet(population[sel2]); if (Randomize.Rand() < pCross) { RuleSet.crossover1(hijo1, hijo2); } else { RuleSet.crossover2(hijo1, hijo2); } RuleSet.mutation(hijo1, conjR, pMut, data, classData, infoAttr, contenedor, nClasses); RuleSet.mutation(hijo2, conjR, pMut, data, classData, infoAttr, contenedor, nClasses); hijo1.computeFitness(data, classData, infoAttr, contenedor, nClasses); hijo2.computeFitness(data, classData, infoAttr, contenedor, nClasses); population[popSize - 2] = new RuleSet(hijo1); population[popSize - 1] = new RuleSet(hijo2); Arrays.sort(population); } /*Decode function*/ ele++; conjR.removeAllElements(); System.out.println( "Fitness of the best chromosome in rule level " + ele + ": " + population[0].fitness); for (i = 0; i < population[0].getRuleSet().length; i++) { if (Math.abs(computeAdjustedResidual(data, classData, population[0].getRule(i), i)) > 1.96) { if (validarRegla(population[0].getRule(i)) && !contenedor.contains(population[0].getRule(i))) { contenedor.add(population[0].getRule(i)); conjR.add(population[0].getRule(i)); } } } } // Finally we should fill the training and test output files doOutput(this.val, this.outputTr, data, classData, infoAttr, contenedor, nClasses); doOutput(this.test, this.outputTst, data, classData, infoAttr, contenedor, nClasses); /*Print the rule obtained*/ for (i = contenedor.size() - 1; i >= 0; i--) { if (reglaPositiva( this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i))) { Fichero.AnadirtoFichero(outputRule, contenedor.elementAt(i).toString(train)); Fichero.AnadirtoFichero( outputRule, " -> " + consecuente( this.train, data, classData, infoAttr, nClasses, contenedor.elementAt(i)) + "\n"); } } System.out.println("Algorithm Finished"); } }
/** Process the training and test files provided in the parameters file to the constructor. */ public void process() { // declarations double[] outputs; double[] outputs2; Instance neighbor; double dist, mean; int actual; Randomize rnd = new Randomize(); Instance ex; gCenter kmeans = null; int iterations = 0; double E; double prevE; int totalMissing = 0; boolean allMissing = true; rnd.setSeed(semilla); // PROCESS try { // Load in memory a dataset that contains a classification problem IS.readSet(input_train_name, true); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables]; // matrix with transformed data kmeans = new gCenter(K, ndatos, nvariables); timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; // first, we choose k 'means' randomly from all // instances totalMissing = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); if (inst.existsAnyMissingValue()) totalMissing++; } if (totalMissing == ndatos) allMissing = true; else allMissing = false; for (int numMeans = 0; numMeans < K; numMeans++) { do { actual = (int) (ndatos * rnd.Rand()); ex = IS.getInstance(actual); } while (ex.existsAnyMissingValue() && !allMissing); kmeans.copyCenter(ex, numMeans); } // now, iterate adjusting clusters' centers and // instances to them prevE = 0; iterations = 0; do { for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); kmeans.setClusterOf(inst, i); } // set new centers kmeans.recalculateCenters(IS); // compute RMSE E = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); E += kmeans.distance(inst, kmeans.getClusterOf(i)); } iterations++; // System.out.println(iterations+"\t"+E); if (Math.abs(prevE - E) == 0) iterations = maxIter; else prevE = E; } while (E > minError && iterations < maxIter); for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_train_name); /** ************************************************************************************ */ // does a test file associated exist? if (input_train_name.compareTo(input_test_name) != 0) { try { // Load in memory a dataset that contains a classification problem IStest.readSet(input_test_name, false); int in = 0; int out = 0; ndatos = IStest.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); for (int i = 0; i < ndatos; i++) { Instance inst = IStest.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_test_name); } }