protected void printVerboseData(
      String pos,
      VariantContext vc,
      double PofF,
      double phredScaledConfidence,
      final GenotypeLikelihoodsCalculationModel.Model model) {
    Allele refAllele = null, altAllele = null;
    for (Allele allele : vc.getAlleles()) {
      if (allele.isReference()) refAllele = allele;
      else altAllele = allele;
    }

    for (int i = 0; i <= N; i++) {
      StringBuilder AFline = new StringBuilder("AFINFO\t");
      AFline.append(pos);
      AFline.append("\t");
      AFline.append(refAllele);
      AFline.append("\t");
      if (altAllele != null) AFline.append(altAllele);
      else AFline.append("N/A");
      AFline.append("\t");
      AFline.append(i + "/" + N + "\t");
      AFline.append(String.format("%.2f\t", ((float) i) / N));
      AFline.append(String.format("%.8f\t", getAlleleFrequencyPriors(model)[i]));
      verboseWriter.println(AFline.toString());
    }

    verboseWriter.println("P(f>0) = " + PofF);
    verboseWriter.println("Qscore = " + phredScaledConfidence);
    verboseWriter.println();
  }
Example #2
0
  protected final void printCallInfo(
      final VariantContext vc,
      final double[] log10AlleleFrequencyPriors,
      final long runtimeNano,
      final AFCalcResult result) {
    printCallElement(vc, "type", "ignore", vc.getType());

    int allelei = 0;
    for (final Allele a : vc.getAlleles())
      printCallElement(vc, "allele", allelei++, a.getDisplayString());

    for (final Genotype g : vc.getGenotypes())
      printCallElement(vc, "PL", g.getSampleName(), g.getLikelihoodsString());

    for (int priorI = 0; priorI < log10AlleleFrequencyPriors.length; priorI++)
      printCallElement(vc, "priorI", priorI, log10AlleleFrequencyPriors[priorI]);

    printCallElement(vc, "runtime.nano", "ignore", runtimeNano);
    printCallElement(vc, "log10PosteriorOfAFEq0", "ignore", result.getLog10PosteriorOfAFEq0());
    printCallElement(vc, "log10PosteriorOfAFGt0", "ignore", result.getLog10PosteriorOfAFGT0());

    for (final Allele allele : result.getAllelesUsedInGenotyping()) {
      if (allele.isNonReference()) {
        printCallElement(vc, "MLE", allele, result.getAlleleCountAtMLE(allele));
        printCallElement(
            vc, "pNonRefByAllele", allele, result.getLog10PosteriorOfAFGt0ForAllele(allele));
      }
    }

    callReport.flush();
  }
 private String getAlleleRepresentation(Allele allele) {
   if (allele.isNull()) { // deletion wrt the ref
     return DEL;
   } else { // insertion, pass actual bases
     return allele.getBaseString();
   }
 }
  @Requires({"eval != null", "comp != null"})
  private EvalCompMatchType doEvalAndCompMatch(
      final VariantContext eval, final VariantContext comp, boolean requireStrictAlleleMatch) {
    // find all of the matching comps
    if (comp.getType() != eval.getType()) return EvalCompMatchType.NO_MATCH;

    // find the comp which matches both the reference allele and alternate allele from eval
    final Allele altEval =
        eval.getAlternateAlleles().size() == 0 ? null : eval.getAlternateAllele(0);
    final Allele altComp =
        comp.getAlternateAlleles().size() == 0 ? null : comp.getAlternateAllele(0);
    if ((altEval == null && altComp == null)
        || (altEval != null
            && altEval.equals(altComp)
            && eval.getReference().equals(comp.getReference()))) return EvalCompMatchType.STRICT;
    else return requireStrictAlleleMatch ? EvalCompMatchType.NO_MATCH : EvalCompMatchType.LENIENT;
  }
  private VariantCallContext generateEmptyContext(
      RefMetaDataTracker tracker,
      ReferenceContext ref,
      Map<String, AlignmentContext> stratifiedContexts,
      AlignmentContext rawContext) {
    VariantContext vc;
    if (UAC.GenotypingMode
        == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) {
      VariantContext vcInput =
          UnifiedGenotyperEngine.getVCFromAllelesRod(
              tracker, ref, rawContext.getLocation(), false, logger, UAC.alleles);
      if (vcInput == null) return null;
      vc =
          new VariantContextBuilder(
                  "UG_call",
                  ref.getLocus().getContig(),
                  vcInput.getStart(),
                  vcInput.getEnd(),
                  vcInput.getAlleles())
              .make();
    } else {
      // deal with bad/non-standard reference bases
      if (!Allele.acceptableAlleleBases(new byte[] {ref.getBase()})) return null;

      Set<Allele> alleles = new HashSet<Allele>();
      alleles.add(Allele.create(ref.getBase(), true));
      vc =
          new VariantContextBuilder(
                  "UG_call",
                  ref.getLocus().getContig(),
                  ref.getLocus().getStart(),
                  ref.getLocus().getStart(),
                  alleles)
              .make();
    }

    if (annotationEngine != null) {
      // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations
      final ReadBackedPileup pileup = rawContext.getBasePileup();
      stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup);

      vc = annotationEngine.annotateContext(tracker, ref, stratifiedContexts, vc);
    }

    return new VariantCallContext(vc, false);
  }
Example #6
0
  static boolean someSampleHasDoubleNonReferenceAllele(VariantContext vc1, VariantContext vc2) {
    for (final Genotype gt1 : vc1.getGenotypes()) {
      Genotype gt2 = vc2.getGenotype(gt1.getSampleName());

      List<Allele> site1Alleles = gt1.getAlleles();
      List<Allele> site2Alleles = gt2.getAlleles();

      Iterator<Allele> all2It = site2Alleles.iterator();
      for (Allele all1 : site1Alleles) {
        Allele all2 = all2It.next(); // this is OK, since allSamplesAreMergeable()

        if (all1.isNonReference() && all2.isNonReference()) // corresponding alleles are alternate
        return true;
      }
    }

    return false;
  }
Example #7
0
    private Allele ensureMergedAllele(
        Allele all1, Allele all2, boolean creatingReferenceForFirstTime) {
      AlleleOneAndTwo all12 = new AlleleOneAndTwo(all1, all2);
      Allele mergedAllele = mergedAlleles.get(all12);

      if (mergedAllele == null) {
        byte[] bases1 = all1.getBases();
        byte[] bases2 = all2.getBases();

        byte[] mergedBases = new byte[bases1.length + intermediateLength + bases2.length];
        System.arraycopy(bases1, 0, mergedBases, 0, bases1.length);
        if (intermediateBases != null)
          System.arraycopy(intermediateBases, 0, mergedBases, bases1.length, intermediateLength);
        System.arraycopy(bases2, 0, mergedBases, bases1.length + intermediateLength, bases2.length);

        mergedAllele = Allele.create(mergedBases, creatingReferenceForFirstTime);
        mergedAlleles.put(all12, mergedAllele);
      }

      return mergedAllele;
    }
  private Map<String, Object> annotateSNP(AlignmentContext stratifiedContext, VariantContext vc) {

    if (!stratifiedContext.hasBasePileup()) return null;

    HashMap<Byte, Integer> alleleCounts = new HashMap<Byte, Integer>();
    for (Allele allele : vc.getAlternateAlleles()) alleleCounts.put(allele.getBases()[0], 0);

    ReadBackedPileup pileup = stratifiedContext.getBasePileup();
    int totalDepth = pileup.size();

    Map<String, Object> map = new HashMap<String, Object>();
    map.put(getKeyNames().get(0), totalDepth); // put total depth in right away

    if (totalDepth == 0) return map; // done, can not compute FA at 0 coverage!!

    int mq0 = 0; // number of "ref" reads that are acually mq0
    for (PileupElement p : pileup) {
      if (p.getMappingQual() == 0) {
        mq0++;
        continue;
      }
      if (alleleCounts.containsKey(p.getBase())) // non-mq0 read and it's an alt
      alleleCounts.put(p.getBase(), alleleCounts.get(p.getBase()) + 1);
    }

    if (mq0 == totalDepth) return map; // if all reads are mq0, there is nothing left to do

    // we need to add counts in the correct order
    String[] fracs = new String[alleleCounts.size()];
    for (int i = 0; i < vc.getAlternateAlleles().size(); i++) {
      fracs[i] =
          String.format(
              "%.3f",
              ((float) alleleCounts.get(vc.getAlternateAllele(i).getBases()[0]))
                  / (totalDepth - mq0));
    }

    map.put(getKeyNames().get(1), fracs);
    return map;
  }
Example #9
0
  static boolean doubleAllelesSegregatePerfectlyAmongSamples(
      VariantContext vc1, VariantContext vc2) {
    // Check that Alleles at vc1 and at vc2 always segregate together in all samples (including
    // reference):
    Map<Allele, Allele> allele1ToAllele2 = new HashMap<Allele, Allele>();
    Map<Allele, Allele> allele2ToAllele1 = new HashMap<Allele, Allele>();

    // Note the segregation of the alleles for the reference genome:
    allele1ToAllele2.put(vc1.getReference(), vc2.getReference());
    allele2ToAllele1.put(vc2.getReference(), vc1.getReference());

    // Note the segregation of the alleles for each sample (and check that it is consistent with the
    // reference and all previous samples).
    for (final Genotype gt1 : vc1.getGenotypes()) {
      Genotype gt2 = vc2.getGenotype(gt1.getSampleName());

      List<Allele> site1Alleles = gt1.getAlleles();
      List<Allele> site2Alleles = gt2.getAlleles();

      Iterator<Allele> all2It = site2Alleles.iterator();
      for (Allele all1 : site1Alleles) {
        Allele all2 = all2It.next();

        Allele all1To2 = allele1ToAllele2.get(all1);
        if (all1To2 == null) allele1ToAllele2.put(all1, all2);
        else if (!all1To2.equals(all2)) // all1 segregates with two different alleles at site 2
        return false;

        Allele all2To1 = allele2ToAllele1.get(all2);
        if (all2To1 == null) allele2ToAllele1.put(all2, all1);
        else if (!all2To1.equals(all1)) // all2 segregates with two different alleles at site 1
        return false;
      }
    }

    return true;
  }
Example #10
0
  /**
   * Read in a list of ExactCall objects from reader, keeping only those with starts in startsToKeep
   * or all sites (if this is empty)
   *
   * @param reader a just-opened reader sitting at the start of the file
   * @param startsToKeep a list of start position of the calls to keep, or empty if all calls should
   *     be kept
   * @param parser a genome loc parser to create genome locs
   * @return a list of ExactCall objects in reader
   * @throws IOException
   */
  public static List<ExactCall> readExactLog(
      final BufferedReader reader, final List<Integer> startsToKeep, GenomeLocParser parser)
      throws IOException {
    if (reader == null) throw new IllegalArgumentException("reader cannot be null");
    if (startsToKeep == null) throw new IllegalArgumentException("startsToKeep cannot be null");
    if (parser == null) throw new IllegalArgumentException("GenomeLocParser cannot be null");

    List<ExactCall> calls = new LinkedList<ExactCall>();

    // skip the header line
    reader.readLine();

    // skip the first "type" line
    reader.readLine();

    while (true) {
      final VariantContextBuilder builder = new VariantContextBuilder();
      final List<Allele> alleles = new ArrayList<Allele>();
      final List<Genotype> genotypes = new ArrayList<Genotype>();
      final double[] posteriors = new double[2];
      final double[] priors = MathUtils.normalizeFromLog10(new double[] {0.5, 0.5}, true);
      final List<Integer> mle = new ArrayList<Integer>();
      final Map<Allele, Double> log10pNonRefByAllele = new HashMap<Allele, Double>();
      long runtimeNano = -1;

      GenomeLoc currentLoc = null;
      while (true) {
        final String line = reader.readLine();
        if (line == null) return calls;

        final String[] parts = line.split("\t");
        final GenomeLoc lineLoc = parser.parseGenomeLoc(parts[0]);
        final String variable = parts[1];
        final String key = parts[2];
        final String value = parts[3];

        if (currentLoc == null) currentLoc = lineLoc;

        if (variable.equals("type")) {
          if (startsToKeep.isEmpty() || startsToKeep.contains(currentLoc.getStart())) {
            builder.alleles(alleles);
            final int stop = currentLoc.getStart() + alleles.get(0).length() - 1;
            builder.chr(currentLoc.getContig()).start(currentLoc.getStart()).stop(stop);
            builder.genotypes(genotypes);
            final int[] mleInts = ArrayUtils.toPrimitive(mle.toArray(new Integer[] {}));
            final AFCalcResult result =
                new AFCalcResult(mleInts, 1, alleles, posteriors, priors, log10pNonRefByAllele);
            calls.add(new ExactCall(builder.make(), runtimeNano, result));
          }
          break;
        } else if (variable.equals("allele")) {
          final boolean isRef = key.equals("0");
          alleles.add(Allele.create(value, isRef));
        } else if (variable.equals("PL")) {
          final GenotypeBuilder gb = new GenotypeBuilder(key);
          gb.PL(GenotypeLikelihoods.fromPLField(value).getAsPLs());
          genotypes.add(gb.make());
        } else if (variable.equals("log10PosteriorOfAFEq0")) {
          posteriors[0] = Double.valueOf(value);
        } else if (variable.equals("log10PosteriorOfAFGt0")) {
          posteriors[1] = Double.valueOf(value);
        } else if (variable.equals("MLE")) {
          mle.add(Integer.valueOf(value));
        } else if (variable.equals("pNonRefByAllele")) {
          final Allele a = Allele.create(key);
          log10pNonRefByAllele.put(a, Double.valueOf(value));
        } else if (variable.equals("runtime.nano")) {
          runtimeNano = Long.valueOf(value);
        } else {
          // nothing to do
        }
      }
    }
  }
Example #11
0
  public void writeBeagleOutput(
      VariantContext preferredVC, VariantContext otherVC, boolean isValidationSite, double prior) {
    GenomeLoc currentLoc =
        VariantContextUtils.getLocation(getToolkit().getGenomeLocParser(), preferredVC);
    StringBuffer beagleOut = new StringBuffer();

    String marker = String.format("%s:%d ", currentLoc.getContig(), currentLoc.getStart());
    beagleOut.append(marker);
    if (markers != null)
      markers.append(marker).append("\t").append(Integer.toString(markerCounter++)).append("\t");
    for (Allele allele : preferredVC.getAlleles()) {
      String bglPrintString;
      if (allele.isNoCall() || allele.isNull()) bglPrintString = "-";
      else bglPrintString = allele.getBaseString(); // get rid of * in case of reference allele

      beagleOut.append(String.format("%s ", bglPrintString));
      if (markers != null) markers.append(bglPrintString).append("\t");
    }
    if (markers != null) markers.append("\n");

    GenotypesContext preferredGenotypes = preferredVC.getGenotypes();
    GenotypesContext otherGenotypes = goodSite(otherVC) ? otherVC.getGenotypes() : null;
    for (String sample : samples) {
      boolean isMaleOnChrX = CHECK_IS_MALE_ON_CHR_X && getSample(sample).getGender() == Gender.MALE;

      Genotype genotype;
      boolean isValidation;
      // use sample as key into genotypes structure
      if (preferredGenotypes.containsSample(sample)) {
        genotype = preferredGenotypes.get(sample);
        isValidation = isValidationSite;
      } else if (otherGenotypes != null && otherGenotypes.containsSample(sample)) {
        genotype = otherGenotypes.get(sample);
        isValidation = !isValidationSite;
      } else {
        // there is magically no genotype for this sample.
        throw new StingException(
            "Sample "
                + sample
                + " arose with no genotype in variant or validation VCF. This should never happen.");
      }

      /*
       * Use likelihoods if: is validation, prior is negative; or: is not validation, has genotype key
       */
      double[] log10Likelihoods = null;
      if ((isValidation && prior < 0.0) || genotype.hasLikelihoods()) {
        log10Likelihoods = genotype.getLikelihoods().getAsVector();

        // see if we need to randomly mask out genotype in this position.
        if (GenomeAnalysisEngine.getRandomGenerator().nextDouble() <= insertedNoCallRate) {
          // we are masking out this genotype
          log10Likelihoods =
              isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS;
        }

        if (isMaleOnChrX) {
          log10Likelihoods[1] = -255; // todo -- warning this is dangerous for multi-allele case
        }
      }
      /** otherwise, use the prior uniformly */
      else if (!isValidation && genotype.isCalled() && !genotype.hasLikelihoods()) {
        // hack to deal with input VCFs with no genotype likelihoods.  Just assume the called
        // genotype
        // is confident.  This is useful for Hapmap and 1KG release VCFs.
        double AA = (1.0 - prior) / 2.0;
        double AB = (1.0 - prior) / 2.0;
        double BB = (1.0 - prior) / 2.0;

        if (genotype.isHomRef()) {
          AA = prior;
        } else if (genotype.isHet()) {
          AB = prior;
        } else if (genotype.isHomVar()) {
          BB = prior;
        }

        log10Likelihoods = MathUtils.toLog10(new double[] {AA, isMaleOnChrX ? 0.0 : AB, BB});
      } else {
        log10Likelihoods =
            isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS;
      }

      writeSampleLikelihoods(beagleOut, preferredVC, log10Likelihoods);
    }

    beagleWriter.println(beagleOut.toString());
  }
Example #12
0
  /**
   * add a record to the file
   *
   * @param vc the Variant Context object
   * @param refBase the ref base used for indels
   * @param refBaseShouldBeAppliedToEndOfAlleles *** THIS SHOULD BE FALSE EXCEPT FOR AN INDEL AT THE
   *     EXTREME BEGINNING OF A CONTIG (WHERE THERE IS NO PREVIOUS BASE, SO WE USE THE BASE AFTER
   *     THE EVENT INSTEAD)
   */
  public void add(VariantContext vc, byte refBase, boolean refBaseShouldBeAppliedToEndOfAlleles) {
    if (mHeader == null)
      throw new IllegalStateException(
          "The VCF Header must be written before records can be added: " + locationString());

    if (doNotWriteGenotypes) vc = VariantContext.modifyGenotypes(vc, null);

    try {
      vc =
          VariantContext.createVariantContextWithPaddedAlleles(
              vc, refBase, refBaseShouldBeAppliedToEndOfAlleles);

      // if we are doing on the fly indexing, add the record ***before*** we write any bytes
      if (indexer != null) indexer.addFeature(vc, positionalStream.getPosition());

      Map<Allele, String> alleleMap = new HashMap<Allele, String>(vc.getAlleles().size());
      alleleMap.put(Allele.NO_CALL, VCFConstants.EMPTY_ALLELE); // convenience for lookup

      // CHROM
      mWriter.write(vc.getChr());
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // POS
      mWriter.write(String.valueOf(vc.getStart()));
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // ID
      String ID = vc.hasID() ? vc.getID() : VCFConstants.EMPTY_ID_FIELD;
      mWriter.write(ID);
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // REF
      alleleMap.put(vc.getReference(), "0");
      String refString = vc.getReference().getDisplayString();
      mWriter.write(refString);
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // ALT
      if (vc.isVariant()) {
        Allele altAllele = vc.getAlternateAllele(0);
        alleleMap.put(altAllele, "1");
        String alt = altAllele.getDisplayString();
        mWriter.write(alt);

        for (int i = 1; i < vc.getAlternateAlleles().size(); i++) {
          altAllele = vc.getAlternateAllele(i);
          alleleMap.put(altAllele, String.valueOf(i + 1));
          alt = altAllele.getDisplayString();
          mWriter.write(",");
          mWriter.write(alt);
        }
      } else {
        mWriter.write(VCFConstants.EMPTY_ALTERNATE_ALLELE_FIELD);
      }
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // QUAL
      if (!vc.hasNegLog10PError()) mWriter.write(VCFConstants.MISSING_VALUE_v4);
      else mWriter.write(getQualValue(vc.getPhredScaledQual()));
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // FILTER
      String filters =
          vc.isFiltered()
              ? ParsingUtils.join(";", ParsingUtils.sortList(vc.getFilters()))
              : (filtersWereAppliedToContext || vc.filtersWereApplied()
                  ? VCFConstants.PASSES_FILTERS_v4
                  : VCFConstants.UNFILTERED);
      mWriter.write(filters);
      mWriter.write(VCFConstants.FIELD_SEPARATOR);

      // INFO
      Map<String, String> infoFields = new TreeMap<String, String>();
      for (Map.Entry<String, Object> field : vc.getAttributes().entrySet()) {
        String key = field.getKey();
        if (key.equals(VariantContext.ID_KEY)
            || key.equals(VariantContext.REFERENCE_BASE_FOR_INDEL_KEY)
            || key.equals(VariantContext.UNPARSED_GENOTYPE_MAP_KEY)
            || key.equals(VariantContext.UNPARSED_GENOTYPE_PARSER_KEY)) continue;

        String outputValue = formatVCFField(field.getValue());
        if (outputValue != null) infoFields.put(key, outputValue);
      }
      writeInfoString(infoFields);

      // FORMAT
      if (vc.hasAttribute(VariantContext.UNPARSED_GENOTYPE_MAP_KEY)) {
        mWriter.write(VCFConstants.FIELD_SEPARATOR);
        mWriter.write(vc.getAttributeAsString(VariantContext.UNPARSED_GENOTYPE_MAP_KEY, ""));
      } else {
        List<String> genotypeAttributeKeys = new ArrayList<String>();
        if (vc.hasGenotypes()) {
          genotypeAttributeKeys.addAll(calcVCFGenotypeKeys(vc));
        } else if (mHeader.hasGenotypingData()) {
          // this needs to be done in case all samples are no-calls
          genotypeAttributeKeys.add(VCFConstants.GENOTYPE_KEY);
        }

        if (genotypeAttributeKeys.size() > 0) {
          String genotypeFormatString =
              ParsingUtils.join(VCFConstants.GENOTYPE_FIELD_SEPARATOR, genotypeAttributeKeys);
          mWriter.write(VCFConstants.FIELD_SEPARATOR);
          mWriter.write(genotypeFormatString);

          addGenotypeData(vc, alleleMap, genotypeAttributeKeys);
        }
      }

      mWriter.write("\n");
      mWriter.flush(); // necessary so that writing to an output stream will work
    } catch (IOException e) {
      throw new RuntimeException("Unable to write the VCF object to " + locationString());
    }
  }
  /**
   * Main entry function to calculate genotypes of a given VC with corresponding GL's
   *
   * @param tracker Tracker
   * @param refContext Reference context
   * @param rawContext Raw context
   * @param stratifiedContexts Stratified alignment contexts
   * @param vc Input VC
   * @param model GL calculation model
   * @param inheritAttributesFromInputVC Output VC will contain attributes inherited from input vc
   * @return VC with assigned genotypes
   */
  public VariantCallContext calculateGenotypes(
      final RefMetaDataTracker tracker,
      final ReferenceContext refContext,
      final AlignmentContext rawContext,
      Map<String, AlignmentContext> stratifiedContexts,
      final VariantContext vc,
      final GenotypeLikelihoodsCalculationModel.Model model,
      final boolean inheritAttributesFromInputVC,
      final Map<String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap>
          perReadAlleleLikelihoodMap) {

    boolean limitedContext =
        tracker == null || refContext == null || rawContext == null || stratifiedContexts == null;

    // initialize the data for this thread if that hasn't been done yet
    if (afcm.get() == null) {
      afcm.set(AFCalcFactory.createAFCalc(UAC, N, logger));
    }

    // estimate our confidence in a reference call and return
    if (vc.getNSamples() == 0) {
      if (limitedContext) return null;
      return (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
          ? estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), false, 1.0)
          : generateEmptyContext(tracker, refContext, stratifiedContexts, rawContext));
    }

    AFCalcResult AFresult = afcm.get().getLog10PNonRef(vc, getAlleleFrequencyPriors(model));

    // is the most likely frequency conformation AC=0 for all alternate alleles?
    boolean bestGuessIsRef = true;

    // determine which alternate alleles have AF>0
    final List<Allele> myAlleles = new ArrayList<Allele>(vc.getAlleles().size());
    final List<Integer> alleleCountsofMLE = new ArrayList<Integer>(vc.getAlleles().size());
    myAlleles.add(vc.getReference());
    for (int i = 0; i < AFresult.getAllelesUsedInGenotyping().size(); i++) {
      final Allele alternateAllele = AFresult.getAllelesUsedInGenotyping().get(i);
      if (alternateAllele.isReference()) continue;

      // we are non-ref if the probability of being non-ref > the emit confidence.
      // the emit confidence is phred-scaled, say 30 => 10^-3.
      // the posterior AF > 0 is log10: -5 => 10^-5
      // we are non-ref if 10^-5 < 10^-3 => -5 < -3
      final boolean isNonRef =
          AFresult.isPolymorphic(alternateAllele, UAC.STANDARD_CONFIDENCE_FOR_EMITTING / -10.0);

      // if the most likely AC is not 0, then this is a good alternate allele to use
      if (isNonRef) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
        bestGuessIsRef = false;
      }
      // if in GENOTYPE_GIVEN_ALLELES mode, we still want to allow the use of a poor allele
      else if (UAC.GenotypingMode
          == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
      }
    }

    final double PoFGT0 = Math.pow(10, AFresult.getLog10PosteriorOfAFGT0());

    // note the math.abs is necessary because -10 * 0.0 => -0.0 which isn't nice
    final double phredScaledConfidence =
        Math.abs(
            !bestGuessIsRef
                    || UAC.GenotypingMode
                        == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE
                            .GENOTYPE_GIVEN_ALLELES
                ? -10 * AFresult.getLog10PosteriorOfAFEq0()
                : -10 * AFresult.getLog10PosteriorOfAFGT0());

    // return a null call if we don't pass the confidence cutoff or the most likely allele frequency
    // is zero
    if (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
        && !passesEmitThreshold(phredScaledConfidence, bestGuessIsRef)) {
      // technically, at this point our confidence in a reference call isn't accurately estimated
      //  because it didn't take into account samples with no data, so let's get a better estimate
      return limitedContext
          ? null
          : estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), true, PoFGT0);
    }

    // start constructing the resulting VC
    final GenomeLoc loc = genomeLocParser.createGenomeLoc(vc);
    final VariantContextBuilder builder =
        new VariantContextBuilder(
            "UG_call", loc.getContig(), loc.getStart(), loc.getStop(), myAlleles);
    builder.log10PError(phredScaledConfidence / -10.0);
    if (!passesCallThreshold(phredScaledConfidence)) builder.filters(filter);

    // create the genotypes
    final GenotypesContext genotypes = afcm.get().subsetAlleles(vc, myAlleles, true, ploidy);
    builder.genotypes(genotypes);

    // print out stats if we have a writer
    if (verboseWriter != null && !limitedContext)
      printVerboseData(refContext.getLocus().toString(), vc, PoFGT0, phredScaledConfidence, model);

    // *** note that calculating strand bias involves overwriting data structures, so we do that
    // last
    final HashMap<String, Object> attributes = new HashMap<String, Object>();

    // inherit attributed from input vc if requested
    if (inheritAttributesFromInputVC) attributes.putAll(vc.getAttributes());
    // if the site was downsampled, record that fact
    if (!limitedContext && rawContext.hasPileupBeenDownsampled())
      attributes.put(VCFConstants.DOWNSAMPLED_KEY, true);

    if (UAC.ANNOTATE_NUMBER_OF_ALLELES_DISCOVERED)
      attributes.put(NUMBER_OF_DISCOVERED_ALLELES_KEY, vc.getAlternateAlleles().size());

    // add the MLE AC and AF annotations
    if (alleleCountsofMLE.size() > 0) {
      attributes.put(VCFConstants.MLE_ALLELE_COUNT_KEY, alleleCountsofMLE);
      final int AN = builder.make().getCalledChrCount();
      final ArrayList<Double> MLEfrequencies = new ArrayList<Double>(alleleCountsofMLE.size());
      // the MLEAC is allowed to be larger than the AN (e.g. in the case of all PLs being 0, the GT
      // is ./. but the exact model may arbitrarily choose an AC>1)
      for (int AC : alleleCountsofMLE) MLEfrequencies.add(Math.min(1.0, (double) AC / (double) AN));
      attributes.put(VCFConstants.MLE_ALLELE_FREQUENCY_KEY, MLEfrequencies);
    }

    if (UAC.COMPUTE_SLOD && !limitedContext && !bestGuessIsRef) {
      // final boolean DEBUG_SLOD = false;

      // the overall lod
      // double overallLog10PofNull = AFresult.log10AlleleFrequencyPosteriors[0];
      double overallLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("overallLog10PofF=" + overallLog10PofF);

      List<Allele> allAllelesToUse = builder.make().getAlleles();

      // the forward lod
      VariantContext vcForward =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.FORWARD,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcForward, getAlleleFrequencyPriors(model));
      // double[] normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double forwardLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double forwardLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("forwardLog10PofNull=" + forwardLog10PofNull + ",
      // forwardLog10PofF=" + forwardLog10PofF);

      // the reverse lod
      VariantContext vcReverse =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.REVERSE,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcReverse, getAlleleFrequencyPriors(model));
      // normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double reverseLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double reverseLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("reverseLog10PofNull=" + reverseLog10PofNull + ",
      // reverseLog10PofF=" + reverseLog10PofF);

      double forwardLod = forwardLog10PofF + reverseLog10PofNull - overallLog10PofF;
      double reverseLod = reverseLog10PofF + forwardLog10PofNull - overallLog10PofF;
      // if ( DEBUG_SLOD ) System.out.println("forward lod=" + forwardLod + ", reverse lod=" +
      // reverseLod);

      // strand score is max bias between forward and reverse strands
      double strandScore = Math.max(forwardLod, reverseLod);
      // rescale by a factor of 10
      strandScore *= 10.0;
      // logger.debug(String.format("SLOD=%f", strandScore));

      if (!Double.isNaN(strandScore)) attributes.put("SB", strandScore);
    }

    // finish constructing the resulting VC
    builder.attributes(attributes);
    VariantContext vcCall = builder.make();

    // if we are subsetting alleles (either because there were too many or because some were not
    // polymorphic)
    // then we may need to trim the alleles (because the original VariantContext may have had to pad
    // at the end).
    if (myAlleles.size() != vc.getAlleles().size()
        && !limitedContext) // limitedContext callers need to handle allele trimming on their own to
                            // keep their perReadAlleleLikelihoodMap alleles in sync
    vcCall = VariantContextUtils.reverseTrimAlleles(vcCall);

    if (annotationEngine != null
        && !limitedContext) { // limitedContext callers need to handle annotations on their own by
                              // calling their own annotationEngine
      // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations
      final ReadBackedPileup pileup = rawContext.getBasePileup();
      stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup);

      vcCall =
          annotationEngine.annotateContext(
              tracker, refContext, stratifiedContexts, vcCall, perReadAlleleLikelihoodMap);
    }

    return new VariantCallContext(vcCall, confidentlyCalled(phredScaledConfidence, PoFGT0));
  }
  public Allele getLikelihoods(
      RefMetaDataTracker tracker,
      ReferenceContext ref,
      Map<String, AlignmentContext> contexts,
      AlignmentContextUtils.ReadOrientation contextType,
      GenotypePriors priors,
      Map<String, MultiallelicGenotypeLikelihoods> GLs,
      Allele alternateAlleleToUse,
      boolean useBAQedPileup) {

    if (tracker == null) return null;

    GenomeLoc loc = ref.getLocus();
    Allele refAllele, altAllele;
    VariantContext vc = null;

    if (!ref.getLocus().equals(lastSiteVisited)) {
      // starting a new site: clear allele list
      alleleList.clear();
      lastSiteVisited = ref.getLocus();
      indelLikelihoodMap.set(new HashMap<PileupElement, LinkedHashMap<Allele, Double>>());
      haplotypeMap.clear();

      if (getAlleleListFromVCF) {
        for (final VariantContext vc_input : tracker.getValues(UAC.alleles, loc)) {
          if (vc_input != null
              && allowableTypes.contains(vc_input.getType())
              && ref.getLocus().getStart() == vc_input.getStart()) {
            vc = vc_input;
            break;
          }
        }
        // ignore places where we don't have a variant
        if (vc == null) return null;

        alleleList.clear();
        if (ignoreSNPAllelesWhenGenotypingIndels) {
          // if there's an allele that has same length as the reference (i.e. a SNP or MNP), ignore
          // it and don't genotype it
          for (Allele a : vc.getAlleles())
            if (a.isNonReference() && a.getBases().length == vc.getReference().getBases().length)
              continue;
            else alleleList.add(a);

        } else {
          for (Allele a : vc.getAlleles()) alleleList.add(a);
        }

      } else {
        alleleList = computeConsensusAlleles(ref, contexts, contextType);
        if (alleleList.isEmpty()) return null;
      }
    }
    // protect against having an indel too close to the edge of a contig
    if (loc.getStart() <= HAPLOTYPE_SIZE) return null;

    // check if there is enough reference window to create haplotypes (can be an issue at end of
    // contigs)
    if (ref.getWindow().getStop() < loc.getStop() + HAPLOTYPE_SIZE) return null;
    if (!(priors instanceof DiploidIndelGenotypePriors))
      throw new StingException(
          "Only diploid-based Indel priors are supported in the DINDEL GL model");

    if (alleleList.isEmpty()) return null;

    refAllele = alleleList.get(0);
    altAllele = alleleList.get(1);

    // look for alt allele that has biggest length distance to ref allele
    int maxLenDiff = 0;
    for (Allele a : alleleList) {
      if (a.isNonReference()) {
        int lenDiff = Math.abs(a.getBaseString().length() - refAllele.getBaseString().length());
        if (lenDiff > maxLenDiff) {
          maxLenDiff = lenDiff;
          altAllele = a;
        }
      }
    }

    final int eventLength = altAllele.getBaseString().length() - refAllele.getBaseString().length();
    final int hsize = (int) ref.getWindow().size() - Math.abs(eventLength) - 1;
    final int numPrefBases = ref.getLocus().getStart() - ref.getWindow().getStart() + 1;

    haplotypeMap =
        Haplotype.makeHaplotypeListFromAlleles(
            alleleList, loc.getStart(), ref, hsize, numPrefBases);

    // For each sample, get genotype likelihoods based on pileup
    // compute prior likelihoods on haplotypes, and initialize haplotype likelihood matrix with
    // them.
    // initialize the GenotypeLikelihoods
    GLs.clear();

    for (Map.Entry<String, AlignmentContext> sample : contexts.entrySet()) {
      AlignmentContext context = AlignmentContextUtils.stratify(sample.getValue(), contextType);

      ReadBackedPileup pileup = null;
      if (context.hasExtendedEventPileup()) pileup = context.getExtendedEventPileup();
      else if (context.hasBasePileup()) pileup = context.getBasePileup();

      if (pileup != null) {
        final double[] genotypeLikelihoods =
            pairModel.computeReadHaplotypeLikelihoods(
                pileup, haplotypeMap, ref, eventLength, getIndelLikelihoodMap());

        GLs.put(
            sample.getKey(),
            new MultiallelicGenotypeLikelihoods(
                sample.getKey(), alleleList, genotypeLikelihoods, getFilteredDepth(pileup)));

        if (DEBUG) {
          System.out.format("Sample:%s Alleles:%s GL:", sample.getKey(), alleleList.toString());
          for (int k = 0; k < genotypeLikelihoods.length; k++)
            System.out.format("%1.4f ", genotypeLikelihoods[k]);
          System.out.println();
        }
      }
    }

    return refAllele;
  }
Example #15
0
 public int hashCode() {
   return all1.hashCode() + all2.hashCode();
 }
  private ArrayList<Allele> computeConsensusAlleles(
      ReferenceContext ref,
      Map<String, AlignmentContext> contexts,
      AlignmentContextUtils.ReadOrientation contextType) {
    Allele refAllele = null, altAllele = null;
    GenomeLoc loc = ref.getLocus();
    ArrayList<Allele> aList = new ArrayList<Allele>();

    HashMap<String, Integer> consensusIndelStrings = new HashMap<String, Integer>();

    int insCount = 0, delCount = 0;
    // quick check of total number of indels in pileup
    for (Map.Entry<String, AlignmentContext> sample : contexts.entrySet()) {
      AlignmentContext context = AlignmentContextUtils.stratify(sample.getValue(), contextType);

      final ReadBackedExtendedEventPileup indelPileup = context.getExtendedEventPileup();
      insCount += indelPileup.getNumberOfInsertions();
      delCount += indelPileup.getNumberOfDeletions();
    }

    if (insCount < minIndelCountForGenotyping && delCount < minIndelCountForGenotyping)
      return aList;

    for (Map.Entry<String, AlignmentContext> sample : contexts.entrySet()) {
      // todo -- warning, can be duplicating expensive partition here
      AlignmentContext context = AlignmentContextUtils.stratify(sample.getValue(), contextType);

      final ReadBackedExtendedEventPileup indelPileup = context.getExtendedEventPileup();

      for (ExtendedEventPileupElement p : indelPileup.toExtendedIterable()) {
        // SAMRecord read = p.getRead();
        GATKSAMRecord read = ReadUtils.hardClipAdaptorSequence(p.getRead());
        if (read == null) continue;
        if (ReadUtils.is454Read(read)) {
          continue;
        }

        /*                if (DEBUG && p.isIndel()) {
                         System.out.format("Read: %s, cigar: %s, aln start: %d, aln end: %d, p.len:%d, Type:%s, EventBases:%s\n",
                                 read.getReadName(),read.getCigar().toString(),read.getAlignmentStart(),read.getAlignmentEnd(),
                                 p.getEventLength(),p.getType().toString(), p.getEventBases());
                     }
        */

        String indelString = p.getEventBases();
        if (p.isInsertion()) {
          boolean foundKey = false;
          if (read.getAlignmentEnd() == loc.getStart()) {
            // first corner condition: a read has an insertion at the end, and we're right at the
            // insertion.
            // In this case, the read could have any of the inserted bases and we need to build a
            // consensus
            for (String s : consensusIndelStrings.keySet()) {
              int cnt = consensusIndelStrings.get(s);
              if (s.startsWith(indelString)) {
                // case 1: current insertion is prefix of indel in hash map
                consensusIndelStrings.put(s, cnt + 1);
                foundKey = true;
                break;
              } else if (indelString.startsWith(s)) {
                // case 2: indel stored in hash table is prefix of current insertion
                // In this case, new bases are new key.
                consensusIndelStrings.remove(s);
                consensusIndelStrings.put(indelString, cnt + 1);
                foundKey = true;
                break;
              }
            }
            if (!foundKey)
              // none of the above: event bases not supported by previous table, so add new key
              consensusIndelStrings.put(indelString, 1);

          } else if (read.getAlignmentStart() == loc.getStart() + 1) {
            // opposite corner condition: read will start at current locus with an insertion
            for (String s : consensusIndelStrings.keySet()) {
              int cnt = consensusIndelStrings.get(s);
              if (s.endsWith(indelString)) {
                // case 1: current insertion is suffix of indel in hash map
                consensusIndelStrings.put(s, cnt + 1);
                foundKey = true;
                break;
              } else if (indelString.endsWith(s)) {
                // case 2: indel stored in hash table is suffix of current insertion
                // In this case, new bases are new key.

                consensusIndelStrings.remove(s);
                consensusIndelStrings.put(indelString, cnt + 1);
                foundKey = true;
                break;
              }
            }
            if (!foundKey)
              // none of the above: event bases not supported by previous table, so add new key
              consensusIndelStrings.put(indelString, 1);

          } else {
            // normal case: insertion somewhere in the middle of a read: add count to hash map
            int cnt =
                consensusIndelStrings.containsKey(indelString)
                    ? consensusIndelStrings.get(indelString)
                    : 0;
            consensusIndelStrings.put(indelString, cnt + 1);
          }

        } else if (p.isDeletion()) {
          indelString = String.format("D%d", p.getEventLength());
          int cnt =
              consensusIndelStrings.containsKey(indelString)
                  ? consensusIndelStrings.get(indelString)
                  : 0;
          consensusIndelStrings.put(indelString, cnt + 1);
        }
      }

      /*            if (DEBUG) {
          int icount = indelPileup.getNumberOfInsertions();
          int dcount = indelPileup.getNumberOfDeletions();
          if (icount + dcount > 0)
          {
              List<Pair<String,Integer>> eventStrings = indelPileup.getEventStringsWithCounts(ref.getBases());
              System.out.format("#ins: %d, #del:%d\n", insCount, delCount);

              for (int i=0 ; i < eventStrings.size() ; i++ ) {
                  System.out.format("%s:%d,",eventStrings.get(i).first,eventStrings.get(i).second);
                  //                int k=0;
              }
              System.out.println();
          }
      }             */
    }

    int maxAlleleCnt = 0;
    String bestAltAllele = "";
    for (String s : consensusIndelStrings.keySet()) {
      int curCnt = consensusIndelStrings.get(s);
      if (curCnt > maxAlleleCnt) {
        maxAlleleCnt = curCnt;
        bestAltAllele = s;
      }
      //            if (DEBUG)
      //                System.out.format("Key:%s, number: %d\n",s,consensusIndelStrings.get(s)  );
    } // gdebug-

    if (maxAlleleCnt < minIndelCountForGenotyping) return aList;

    if (bestAltAllele.startsWith("D")) {
      // get deletion length
      int dLen = Integer.valueOf(bestAltAllele.substring(1));
      // get ref bases of accurate deletion
      int startIdxInReference = (int) (1 + loc.getStart() - ref.getWindow().getStart());

      // System.out.println(new String(ref.getBases()));
      byte[] refBases =
          Arrays.copyOfRange(ref.getBases(), startIdxInReference, startIdxInReference + dLen);

      if (Allele.acceptableAlleleBases(refBases)) {
        refAllele = Allele.create(refBases, true);
        altAllele = Allele.create(Allele.NULL_ALLELE_STRING, false);
      }
    } else {
      // insertion case
      if (Allele.acceptableAlleleBases(bestAltAllele)) {
        refAllele = Allele.create(Allele.NULL_ALLELE_STRING, true);
        altAllele = Allele.create(bestAltAllele, false);
      }
    }
    if (refAllele != null && altAllele != null) {
      aList.add(0, refAllele);
      aList.add(1, altAllele);
    }
    return aList;
  }
  private Map<String, Object> annotateIndel(AlignmentContext stratifiedContext, VariantContext vc) {

    if (!stratifiedContext.hasExtendedEventPileup()) {
      return null;
    }

    ReadBackedExtendedEventPileup pileup = stratifiedContext.getExtendedEventPileup();
    if (pileup == null) return null;
    int totalDepth = pileup.size();

    Map<String, Object> map = new HashMap<String, Object>();
    map.put(getKeyNames().get(0), totalDepth); // put total depth in right away

    if (totalDepth == 0) return map;
    int mq0 = 0; // number of "ref" reads that are acually mq0

    HashMap<String, Integer> alleleCounts = new HashMap<String, Integer>();
    Allele refAllele = vc.getReference();

    for (Allele allele : vc.getAlternateAlleles()) {

      if (allele.isNoCall()) {
        continue; // this does not look so good, should we die???
      }

      alleleCounts.put(getAlleleRepresentation(allele), 0);
    }

    for (ExtendedEventPileupElement e : pileup.toExtendedIterable()) {

      if (e.getMappingQual() == 0) {
        mq0++;
        continue;
      }

      if (e.isInsertion()) {

        final String b = e.getEventBases();
        if (alleleCounts.containsKey(b)) {
          alleleCounts.put(b, alleleCounts.get(b) + 1);
        }

      } else {
        if (e.isDeletion()) {
          if (e.getEventLength() == refAllele.length()) {
            // this is indeed the deletion allele recorded in VC
            final String b = DEL;
            if (alleleCounts.containsKey(b)) {
              alleleCounts.put(b, alleleCounts.get(b) + 1);
            }
          }
          //                    else {
          //                        System.out.print("   deletion of WRONG length found");
          //                    }
        }
      }
    }

    if (mq0 == totalDepth) return map;

    String[] fracs = new String[alleleCounts.size()];
    for (int i = 0; i < vc.getAlternateAlleles().size(); i++)
      fracs[i] =
          String.format(
              "%.3f",
              ((float) alleleCounts.get(getAlleleRepresentation(vc.getAlternateAllele(i))))
                  / (totalDepth - mq0));

    map.put(getKeyNames().get(1), fracs);

    // map.put(getKeyNames().get(0), counts);
    return map;
  }