/** Collect relevant information from each variant in the supplied VCFs */ @Override public Integer map(RefMetaDataTracker tracker, ReferenceContext ref, AlignmentContext context) { // we track the processed bp and expose this for modules instead of wasting CPU power on // calculating // the same thing over and over in evals that want the processed bp synchronized (this) { nProcessedLoci += context.getSkippedBases() + (ref == null ? 0 : 1); } if (tracker != null) { String aastr = (ancestralAlignments == null) ? null : new String( ancestralAlignments .getSubsequenceAt( ref.getLocus().getContig(), ref.getLocus().getStart(), ref.getLocus().getStop()) .getBases()); // // update the dynamic stratifications // for (final VariantContext vc : tracker.getValues(evals, ref.getLocus())) { // // don't worry -- DynamicStratification only work with one eval object // for ( final DynamicStratification ds : dynamicStratifications ) { // ds.update(vc); // } // } // --------- track --------- sample - VariantContexts - HashMap<RodBinding<VariantContext>, HashMap<String, Collection<VariantContext>>> evalVCs = variantEvalUtils.bindVariantContexts( tracker, ref, evals, byFilterIsEnabled, true, perSampleIsEnabled, mergeEvals); HashMap<RodBinding<VariantContext>, HashMap<String, Collection<VariantContext>>> compVCs = variantEvalUtils.bindVariantContexts( tracker, ref, comps, byFilterIsEnabled, false, false, false); // for each eval track for (final RodBinding<VariantContext> evalRod : evals) { final Map<String, Collection<VariantContext>> emptyEvalMap = Collections.emptyMap(); final Map<String, Collection<VariantContext>> evalSet = evalVCs.containsKey(evalRod) ? evalVCs.get(evalRod) : emptyEvalMap; // for each sample stratifier for (final String sampleName : sampleNamesForStratification) { Collection<VariantContext> evalSetBySample = evalSet.get(sampleName); if (evalSetBySample == null) { evalSetBySample = new HashSet<VariantContext>(1); evalSetBySample.add(null); } // for each eval in the track for (VariantContext eval : evalSetBySample) { // deal with ancestral alleles if requested if (eval != null && aastr != null) { eval = new VariantContextBuilder(eval).attribute("ANCESTRALALLELE", aastr).make(); } // for each comp track for (final RodBinding<VariantContext> compRod : comps) { // no sample stratification for comps final HashMap<String, Collection<VariantContext>> compSetHash = compVCs.get(compRod); final Collection<VariantContext> compSet = (compSetHash == null || compSetHash.size() == 0) ? Collections.<VariantContext>emptyList() : compVCs.get(compRod).values().iterator().next(); // find the comp final VariantContext comp = findMatchingComp(eval, compSet); for (EvaluationContext nec : getEvaluationContexts( tracker, ref, eval, evalRod.getName(), comp, compRod.getName(), sampleName)) { // eval against the comp synchronized (nec) { nec.apply(tracker, ref, context, comp, eval); } // eval=null against all comps of different type that aren't bound to another eval for (VariantContext otherComp : compSet) { if (otherComp != comp && !compHasMatchingEval(otherComp, evalSetBySample)) { synchronized (nec) { nec.apply(tracker, ref, context, otherComp, null); } } } } } } } if (mergeEvals) break; // stop processing the eval tracks } } return null; }
/** * General-purpose tool for variant evaluation (% in dbSNP, genotype concordance, Ti/Tv ratios, and * a lot more) * * <p>Given a variant callset, it is common to calculate various quality control metrics. These * metrics include the number of raw or filtered SNP counts; ratio of transition mutations to * transversions; concordance of a particular sample's calls to a genotyping chip; number of * singletons per sample; etc. Furthermore, it is often useful to stratify these metrics by various * criteria like functional class (missense, nonsense, silent), whether the site is CpG site, the * amino acid degeneracy of the site, etc. VariantEval facilitates these calculations in two ways: * by providing several built-in evaluation and stratification modules, and by providing a framework * that permits the easy development of new evaluation and stratification modules. * * <h2>Input</h2> * * <p>One or more variant sets to evaluate plus any number of comparison sets. * * <h2>Output</h2> * * <p>Evaluation tables detailing the results of the eval modules which were applied. For example: * * <pre> * output.eval.gatkreport: * ##:GATKReport.v0.1 CountVariants : Counts different classes of variants in the sample * CountVariants CompRod CpG EvalRod JexlExpression Novelty nProcessedLoci nCalledLoci nRefLoci nVariantLoci variantRate ... * CountVariants dbsnp CpG eval none all 65900028 135770 0 135770 0.00206024 ... * CountVariants dbsnp CpG eval none known 65900028 47068 0 47068 0.00071423 ... * CountVariants dbsnp CpG eval none novel 65900028 88702 0 88702 0.00134601 ... * CountVariants dbsnp all eval none all 65900028 330818 0 330818 0.00502000 ... * CountVariants dbsnp all eval none known 65900028 120685 0 120685 0.00183133 ... * CountVariants dbsnp all eval none novel 65900028 210133 0 210133 0.00318866 ... * CountVariants dbsnp non_CpG eval none all 65900028 195048 0 195048 0.00295976 ... * CountVariants dbsnp non_CpG eval none known 65900028 73617 0 73617 0.00111710 ... * CountVariants dbsnp non_CpG eval none novel 65900028 121431 0 121431 0.00184265 ... * ... * </pre> * * <h2>Examples</h2> * * <pre> * java -Xmx2g -jar GenomeAnalysisTK.jar \ * -R ref.fasta \ * -T VariantEval \ * -o output.eval.gatkreport \ * --eval:set1 set1.vcf \ * --eval:set2 set2.vcf \ * [--comp comp.vcf] * </pre> */ @DocumentedGATKFeature( groupName = HelpConstants.DOCS_CAT_VARMANIP, extraDocs = {CommandLineGATK.class}) @Reference(window = @Window(start = -50, stop = 50)) @PartitionBy(PartitionType.NONE) public class VariantEval extends RodWalker<Integer, Integer> implements TreeReducible<Integer> { public static final String IS_SINGLETON_KEY = "ISSINGLETON"; @Output protected PrintStream out; /** The variant file(s) to evaluate. */ @Input(fullName = "eval", shortName = "eval", doc = "Input evaluation file(s)", required = true) public List<RodBinding<VariantContext>> evals; /** The variant file(s) to compare against. */ @Input(fullName = "comp", shortName = "comp", doc = "Input comparison file(s)", required = false) public List<RodBinding<VariantContext>> compsProvided = Collections.emptyList(); private List<RodBinding<VariantContext>> comps = new ArrayList<RodBinding<VariantContext>>(); /** * dbSNP comparison VCF. By default, the dbSNP file is used to specify the set of "known" * variants. Other sets can be specified with the -knownName (--known_names) argument. */ @ArgumentCollection protected DbsnpArgumentCollection dbsnp = new DbsnpArgumentCollection(); /** * Some analyses want to count overlap not with dbSNP (which is in general very open) but actually * want to itemize their overlap specifically with a set of gold standard sites such as HapMap, * OMNI, or the gold standard indels. This argument provides a mechanism for communicating which * file to use */ @Input( fullName = "goldStandard", shortName = "gold", doc = "Evaluations that count calls at sites of true variation (e.g., indel calls) will use this argument as their gold standard for comparison", required = false) public RodBinding<VariantContext> goldStandard = null; /** Note that the --list argument requires a fully resolved and correct command-line to work. */ @Argument( fullName = "list", shortName = "ls", doc = "List the available eval modules and exit", required = false) protected Boolean LIST = false; // Partitioning the data arguments @Argument( shortName = "select", doc = "One or more stratifications to use when evaluating the data", required = false) protected ArrayList<String> SELECT_EXPS = new ArrayList<String>(); @Argument( shortName = "selectName", doc = "Names to use for the list of stratifications (must be a 1-to-1 mapping)", required = false) protected ArrayList<String> SELECT_NAMES = new ArrayList<String>(); @Argument( fullName = "sample", shortName = "sn", doc = "Derive eval and comp contexts using only these sample genotypes, when genotypes are available in the original context", required = false) protected Set<String> SAMPLE_EXPRESSIONS; /** List of rod tracks to be used for specifying "known" variants other than dbSNP. */ @Argument( shortName = "knownName", doc = "Name of ROD bindings containing variant sites that should be treated as known when splitting eval rods into known and novel subsets", required = false) protected HashSet<String> KNOWN_NAMES = new HashSet<String>(); List<RodBinding<VariantContext>> knowns = new ArrayList<RodBinding<VariantContext>>(); // Stratification arguments @Argument( fullName = "stratificationModule", shortName = "ST", doc = "One or more specific stratification modules to apply to the eval track(s) (in addition to the standard stratifications, unless -noS is specified)", required = false) protected String[] STRATIFICATIONS_TO_USE = {}; @Argument( fullName = "doNotUseAllStandardStratifications", shortName = "noST", doc = "Do not use the standard stratification modules by default (instead, only those that are specified with the -S option)", required = false) protected Boolean NO_STANDARD_STRATIFICATIONS = false; /** See the -list argument to view available modules. */ @Argument( fullName = "evalModule", shortName = "EV", doc = "One or more specific eval modules to apply to the eval track(s) (in addition to the standard modules, unless -noEV is specified)", required = false) protected String[] MODULES_TO_USE = {}; @Argument( fullName = "doNotUseAllStandardModules", shortName = "noEV", doc = "Do not use the standard modules by default (instead, only those that are specified with the -EV option)", required = false) protected Boolean NO_STANDARD_MODULES = false; @Argument( fullName = "minPhaseQuality", shortName = "mpq", doc = "Minimum phasing quality", required = false) protected double MIN_PHASE_QUALITY = 10.0; @Argument( shortName = "mvq", fullName = "mendelianViolationQualThreshold", doc = "Minimum genotype QUAL score for each trio member required to accept a site as a violation. Default is 50.", required = false) protected double MENDELIAN_VIOLATION_QUAL_THRESHOLD = 50; @Argument( shortName = "ploidy", fullName = "samplePloidy", doc = "Per-sample ploidy (number of chromosomes per sample)", required = false) protected int ploidy = GATKVariantContextUtils.DEFAULT_PLOIDY; @Argument( fullName = "ancestralAlignments", shortName = "aa", doc = "Fasta file with ancestral alleles", required = false) private File ancestralAlignmentsFile = null; @Argument( fullName = "requireStrictAlleleMatch", shortName = "strict", doc = "If provided only comp and eval tracks with exactly matching reference and alternate alleles will be counted as overlapping", required = false) private boolean requireStrictAlleleMatch = false; @Argument( fullName = "keepAC0", shortName = "keepAC0", doc = "If provided, modules that track polymorphic sites will not require that a site have AC > 0 when the input eval has genotypes", required = false) private boolean keepSitesWithAC0 = false; @Hidden @Argument( fullName = "numSamples", shortName = "numSamples", doc = "If provided, modules that track polymorphic sites will not require that a site have AC > 0 when the input eval has genotypes", required = false) private int numSamplesFromArgument = 0; /** * If true, VariantEval will treat -eval 1 -eval 2 as separate tracks from the same underlying * variant set, and evaluate the union of the results. Useful when you want to do -eval chr1.vcf * -eval chr2.vcf etc. */ @Argument( fullName = "mergeEvals", shortName = "mergeEvals", doc = "If provided, all -eval tracks will be merged into a single eval track", required = false) public boolean mergeEvals = false; /** File containing tribble-readable features for the IntervalStratificiation */ @Input( fullName = "stratIntervals", shortName = "stratIntervals", doc = "File containing tribble-readable features for the IntervalStratificiation", required = false) public IntervalBinding<Feature> intervalsFile = null; /** * File containing tribble-readable features containing known CNVs. For use with VariantSummary * table. */ @Input( fullName = "knownCNVs", shortName = "knownCNVs", doc = "File containing tribble-readable features describing a known list of copy number variants", required = false) public IntervalBinding<Feature> knownCNVsFile = null; Map<String, IntervalTree<GenomeLoc>> knownCNVsByContig = Collections.emptyMap(); // Variables private Set<SortableJexlVCMatchExp> jexlExpressions = new TreeSet<SortableJexlVCMatchExp>(); private boolean isSubsettingSamples; private Set<String> sampleNamesForEvaluation = new LinkedHashSet<String>(); private Set<String> sampleNamesForStratification = new LinkedHashSet<String>(); // important stratifications private boolean byFilterIsEnabled = false; private boolean perSampleIsEnabled = false; // Public constants private static String ALL_SAMPLE_NAME = "all"; // the number of processed bp for this walker long nProcessedLoci = 0; // Utility class private final VariantEvalUtils variantEvalUtils = new VariantEvalUtils(this); // Ancestral alignments private IndexedFastaSequenceFile ancestralAlignments = null; // The set of all possible evaluation contexts StratificationManager<VariantStratifier, EvaluationContext> stratManager; // Set<DynamicStratification> dynamicStratifications = Collections.emptySet(); /** Initialize the stratifications, evaluations, evaluation contexts, and reporting object */ public void initialize() { // Just list the modules, and exit quickly. if (LIST) { variantEvalUtils.listModulesAndExit(); } // maintain the full list of comps comps.addAll(compsProvided); if (dbsnp.dbsnp.isBound()) { comps.add(dbsnp.dbsnp); knowns.add(dbsnp.dbsnp); } // Add a dummy comp track if none exists if (comps.size() == 0) comps.add( new RodBinding<VariantContext>(VariantContext.class, "none", "UNBOUND", "", new Tags())); // Set up set of additional knowns for (RodBinding<VariantContext> compRod : comps) { if (KNOWN_NAMES.contains(compRod.getName())) knowns.add(compRod); } // Now that we have all the rods categorized, determine the sample list from the eval rods. Map<String, VCFHeader> vcfRods = GATKVCFUtils.getVCFHeadersFromRods(getToolkit(), evals); Set<String> vcfSamples = SampleUtils.getSampleList( vcfRods, GATKVariantContextUtils.GenotypeMergeType.REQUIRE_UNIQUE); // Load the sample list, using an intermediate tree set to sort the samples final Set<String> allSampleNames = SampleUtils.getSamplesFromCommandLineInput(vcfSamples); sampleNamesForEvaluation.addAll( new TreeSet<String>( SampleUtils.getSamplesFromCommandLineInput(vcfSamples, SAMPLE_EXPRESSIONS))); isSubsettingSamples = !sampleNamesForEvaluation.containsAll(allSampleNames); if (Arrays.asList(STRATIFICATIONS_TO_USE).contains("Sample")) { sampleNamesForStratification.addAll(sampleNamesForEvaluation); } sampleNamesForStratification.add(ALL_SAMPLE_NAME); // Initialize select expressions for (VariantContextUtils.JexlVCMatchExp jexl : VariantContextUtils.initializeMatchExps(SELECT_NAMES, SELECT_EXPS)) { SortableJexlVCMatchExp sjexl = new SortableJexlVCMatchExp(jexl.name, jexl.exp); jexlExpressions.add(sjexl); } // Initialize the set of stratifications and evaluations to use // The list of stratifiers and evaluators to use final List<VariantStratifier> stratificationObjects = variantEvalUtils.initializeStratificationObjects( NO_STANDARD_STRATIFICATIONS, STRATIFICATIONS_TO_USE); final Set<Class<? extends VariantEvaluator>> evaluationClasses = variantEvalUtils.initializeEvaluationObjects(NO_STANDARD_MODULES, MODULES_TO_USE); checkForIncompatibleEvaluatorsAndStratifiers(stratificationObjects, evaluationClasses); for (VariantStratifier vs : stratificationObjects) { if (vs.getName().equals("Filter")) byFilterIsEnabled = true; else if (vs.getName().equals("Sample")) perSampleIsEnabled = true; } if (intervalsFile != null) { boolean fail = true; for (final VariantStratifier vs : stratificationObjects) { if (vs.getClass().equals(IntervalStratification.class)) fail = false; } if (fail) throw new UserException.BadArgumentValue( "ST", "stratIntervals argument provided but -ST IntervalStratification not provided"); } // Initialize the evaluation contexts createStratificationStates(stratificationObjects, evaluationClasses); // Load ancestral alignments if (ancestralAlignmentsFile != null) { try { ancestralAlignments = new IndexedFastaSequenceFile(ancestralAlignmentsFile); } catch (FileNotFoundException e) { throw new ReviewedStingException( String.format( "The ancestral alignments file, '%s', could not be found", ancestralAlignmentsFile.getAbsolutePath())); } } // initialize CNVs if (knownCNVsFile != null) { knownCNVsByContig = createIntervalTreeByContig(knownCNVsFile); } } final void checkForIncompatibleEvaluatorsAndStratifiers( final List<VariantStratifier> stratificationObjects, Set<Class<? extends VariantEvaluator>> evaluationClasses) { for (final VariantStratifier vs : stratificationObjects) { for (Class<? extends VariantEvaluator> ec : evaluationClasses) if (vs.getIncompatibleEvaluators().contains(ec)) throw new UserException.BadArgumentValue( "ST and ET", "The selected stratification " + vs.getName() + " and evaluator " + ec.getSimpleName() + " are incompatible due to combinatorial memory requirements." + " Please disable one"); } } final void createStratificationStates( final List<VariantStratifier> stratificationObjects, final Set<Class<? extends VariantEvaluator>> evaluationObjects) { final List<VariantStratifier> strats = new ArrayList<VariantStratifier>(stratificationObjects); stratManager = new StratificationManager<VariantStratifier, EvaluationContext>(strats); logger.info("Creating " + stratManager.size() + " combinatorial stratification states"); for (int i = 0; i < stratManager.size(); i++) { EvaluationContext ec = new EvaluationContext(this, evaluationObjects); stratManager.set(i, ec); } } public final Map<String, IntervalTree<GenomeLoc>> createIntervalTreeByContig( final IntervalBinding<Feature> intervals) { final Map<String, IntervalTree<GenomeLoc>> byContig = new HashMap<String, IntervalTree<GenomeLoc>>(); final List<GenomeLoc> locs = intervals.getIntervals(getToolkit()); // set up the map from contig -> interval tree for (final String contig : getContigNames()) byContig.put(contig, new IntervalTree<GenomeLoc>()); for (final GenomeLoc loc : locs) { byContig.get(loc.getContig()).put(loc.getStart(), loc.getStop(), loc); } return byContig; } /** Collect relevant information from each variant in the supplied VCFs */ @Override public Integer map(RefMetaDataTracker tracker, ReferenceContext ref, AlignmentContext context) { // we track the processed bp and expose this for modules instead of wasting CPU power on // calculating // the same thing over and over in evals that want the processed bp synchronized (this) { nProcessedLoci += context.getSkippedBases() + (ref == null ? 0 : 1); } if (tracker != null) { String aastr = (ancestralAlignments == null) ? null : new String( ancestralAlignments .getSubsequenceAt( ref.getLocus().getContig(), ref.getLocus().getStart(), ref.getLocus().getStop()) .getBases()); // // update the dynamic stratifications // for (final VariantContext vc : tracker.getValues(evals, ref.getLocus())) { // // don't worry -- DynamicStratification only work with one eval object // for ( final DynamicStratification ds : dynamicStratifications ) { // ds.update(vc); // } // } // --------- track --------- sample - VariantContexts - HashMap<RodBinding<VariantContext>, HashMap<String, Collection<VariantContext>>> evalVCs = variantEvalUtils.bindVariantContexts( tracker, ref, evals, byFilterIsEnabled, true, perSampleIsEnabled, mergeEvals); HashMap<RodBinding<VariantContext>, HashMap<String, Collection<VariantContext>>> compVCs = variantEvalUtils.bindVariantContexts( tracker, ref, comps, byFilterIsEnabled, false, false, false); // for each eval track for (final RodBinding<VariantContext> evalRod : evals) { final Map<String, Collection<VariantContext>> emptyEvalMap = Collections.emptyMap(); final Map<String, Collection<VariantContext>> evalSet = evalVCs.containsKey(evalRod) ? evalVCs.get(evalRod) : emptyEvalMap; // for each sample stratifier for (final String sampleName : sampleNamesForStratification) { Collection<VariantContext> evalSetBySample = evalSet.get(sampleName); if (evalSetBySample == null) { evalSetBySample = new HashSet<VariantContext>(1); evalSetBySample.add(null); } // for each eval in the track for (VariantContext eval : evalSetBySample) { // deal with ancestral alleles if requested if (eval != null && aastr != null) { eval = new VariantContextBuilder(eval).attribute("ANCESTRALALLELE", aastr).make(); } // for each comp track for (final RodBinding<VariantContext> compRod : comps) { // no sample stratification for comps final HashMap<String, Collection<VariantContext>> compSetHash = compVCs.get(compRod); final Collection<VariantContext> compSet = (compSetHash == null || compSetHash.size() == 0) ? Collections.<VariantContext>emptyList() : compVCs.get(compRod).values().iterator().next(); // find the comp final VariantContext comp = findMatchingComp(eval, compSet); for (EvaluationContext nec : getEvaluationContexts( tracker, ref, eval, evalRod.getName(), comp, compRod.getName(), sampleName)) { // eval against the comp synchronized (nec) { nec.apply(tracker, ref, context, comp, eval); } // eval=null against all comps of different type that aren't bound to another eval for (VariantContext otherComp : compSet) { if (otherComp != comp && !compHasMatchingEval(otherComp, evalSetBySample)) { synchronized (nec) { nec.apply(tracker, ref, context, otherComp, null); } } } } } } } if (mergeEvals) break; // stop processing the eval tracks } } return null; } /** * Given specific eval and comp VCs and the sample name, return an iterable over all of the * applicable state keys. * * <p>this code isn't structured yet for efficiency. Here we currently are doing the following * inefficient algorithm: * * <p>for each strat: get list of relevant states that eval and comp according to strat add this * list of states to a list of list states * * <p>then * * <p>ask the strat manager to look up all of the keys associated with the combinations of these * states. For example, suppose we have a single variant S. We have active strats EvalRod, * CompRod, and Novelty. We produce a list that looks like: * * <p>L = [[Eval], [Comp], [All, Novel]] * * <p>We then go through the strat manager tree to produce the keys associated with these states: * * <p>K = [0, 1] where EVAL x COMP x ALL = 0 and EVAL x COMP x NOVEL = 1 * * <p>It's clear that a better * * <p>TODO -- create an inline version that doesn't create the intermediate list of list * * @param tracker * @param ref * @param eval * @param evalName * @param comp * @param compName * @param sampleName * @return */ protected Collection<EvaluationContext> getEvaluationContexts( final RefMetaDataTracker tracker, final ReferenceContext ref, final VariantContext eval, final String evalName, final VariantContext comp, final String compName, final String sampleName) { final List<List<Object>> states = new LinkedList<List<Object>>(); for (final VariantStratifier vs : stratManager.getStratifiers()) { states.add(vs.getRelevantStates(ref, tracker, comp, compName, eval, evalName, sampleName)); } return stratManager.values(states); } @Requires({"comp != null", "evals != null"}) private boolean compHasMatchingEval( final VariantContext comp, final Collection<VariantContext> evals) { // find all of the matching comps for (final VariantContext eval : evals) { if (eval != null && doEvalAndCompMatch(comp, eval, requireStrictAlleleMatch) != EvalCompMatchType.NO_MATCH) return true; } // nothing matched return false; } private enum EvalCompMatchType { NO_MATCH, STRICT, LENIENT } @Requires({"eval != null", "comp != null"}) private EvalCompMatchType doEvalAndCompMatch( final VariantContext eval, final VariantContext comp, boolean requireStrictAlleleMatch) { if (comp.getType() == VariantContext.Type.NO_VARIATION || eval.getType() == VariantContext.Type.NO_VARIATION) // if either of these are NO_VARIATION they are LENIENT matches return EvalCompMatchType.LENIENT; if (comp.getType() != eval.getType()) return EvalCompMatchType.NO_MATCH; // find the comp which matches both the reference allele and alternate allele from eval final Allele altEval = eval.getAlternateAlleles().size() == 0 ? null : eval.getAlternateAllele(0); final Allele altComp = comp.getAlternateAlleles().size() == 0 ? null : comp.getAlternateAllele(0); if ((altEval == null && altComp == null) || (altEval != null && altEval.equals(altComp) && eval.getReference().equals(comp.getReference()))) return EvalCompMatchType.STRICT; else return requireStrictAlleleMatch ? EvalCompMatchType.NO_MATCH : EvalCompMatchType.LENIENT; } private VariantContext findMatchingComp( final VariantContext eval, final Collection<VariantContext> comps) { // if no comps, return null if (comps == null || comps.isEmpty()) return null; // if no eval, return any comp if (eval == null) return comps.iterator().next(); // find all of the matching comps VariantContext lenientMatch = null; for (final VariantContext comp : comps) { switch (doEvalAndCompMatch(comp, eval, requireStrictAlleleMatch)) { case STRICT: return comp; case LENIENT: if (lenientMatch == null) lenientMatch = comp; break; case NO_MATCH: // do nothing } } // nothing matched, just return lenientMatch, which might be null return lenientMatch; } public Integer treeReduce(Integer lhs, Integer rhs) { return null; } @Override public Integer reduceInit() { return null; } @Override public Integer reduce(Integer value, Integer sum) { return null; } /** * Output the finalized report * * @param result an integer that doesn't get used for anything */ public void onTraversalDone(Integer result) { logger.info("Finalizing variant report"); // go through the evaluations and finalize them for (final EvaluationContext nec : stratManager.values()) for (final VariantEvaluator ve : nec.getVariantEvaluators()) ve.finalizeEvaluation(); VariantEvalReportWriter.writeReport( out, stratManager, stratManager.getStratifiers(), stratManager.get(0).getVariantEvaluators()); } // Accessors public Logger getLogger() { return logger; } public double getMinPhaseQuality() { return MIN_PHASE_QUALITY; } public int getSamplePloidy() { return ploidy; } public double getMendelianViolationQualThreshold() { return MENDELIAN_VIOLATION_QUAL_THRESHOLD; } public static String getAllSampleName() { return ALL_SAMPLE_NAME; } public List<RodBinding<VariantContext>> getKnowns() { return knowns; } public List<RodBinding<VariantContext>> getEvals() { return evals; } public boolean isSubsettingToSpecificSamples() { return isSubsettingSamples; } public Set<String> getSampleNamesForEvaluation() { return sampleNamesForEvaluation; } public int getNumberOfSamplesForEvaluation() { if (sampleNamesForEvaluation != null && !sampleNamesForEvaluation.isEmpty()) return sampleNamesForEvaluation.size(); else { return numSamplesFromArgument; } } public Set<String> getSampleNamesForStratification() { return sampleNamesForStratification; } public List<RodBinding<VariantContext>> getComps() { return comps; } public Set<SortableJexlVCMatchExp> getJexlExpressions() { return jexlExpressions; } public long getnProcessedLoci() { return nProcessedLoci; } public Set<String> getContigNames() { final TreeSet<String> contigs = new TreeSet<String>(); for (final SAMSequenceRecord r : getToolkit() .getReferenceDataSource() .getReference() .getSequenceDictionary() .getSequences()) { contigs.add(r.getSequenceName()); } return contigs; } /** * getToolkit is protected, so we have to pseudo-overload it here so eval / strats can get the * toolkit * * @return */ public GenomeAnalysisEngine getToolkit() { return super.getToolkit(); } public boolean ignoreAC0Sites() { return !keepSitesWithAC0; } }