@Test public void testSampleBy() { DataFrame df = context.range(0, 100, 1, 2).select(col("id").mod(3).as("key")); DataFrame sampled = df.stat().<Integer>sampleBy("key", ImmutableMap.of(0, 0.1, 1, 0.2), 0L); Row[] actual = sampled.groupBy("key").count().orderBy("key").collect(); Assert.assertEquals(0, actual[0].getLong(0)); Assert.assertTrue(0 <= actual[0].getLong(1) && actual[0].getLong(1) <= 8); Assert.assertEquals(1, actual[1].getLong(0)); Assert.assertTrue(2 <= actual[1].getLong(1) && actual[1].getLong(1) <= 13); }
@Test public void testBloomFilter() { DataFrame df = context.range(1000); BloomFilter filter1 = df.stat().bloomFilter("id", 1000, 0.03); Assert.assertTrue(filter1.expectedFpp() - 0.03 < 1e-3); for (int i = 0; i < 1000; i++) { Assert.assertTrue(filter1.mightContain(i)); } BloomFilter filter2 = df.stat().bloomFilter(col("id").multiply(3), 1000, 0.03); Assert.assertTrue(filter2.expectedFpp() - 0.03 < 1e-3); for (int i = 0; i < 1000; i++) { Assert.assertTrue(filter2.mightContain(i * 3)); } BloomFilter filter3 = df.stat().bloomFilter("id", 1000, 64 * 5); Assert.assertTrue(filter3.bitSize() == 64 * 5); for (int i = 0; i < 1000; i++) { Assert.assertTrue(filter3.mightContain(i)); } BloomFilter filter4 = df.stat().bloomFilter(col("id").multiply(3), 1000, 64 * 5); Assert.assertTrue(filter4.bitSize() == 64 * 5); for (int i = 0; i < 1000; i++) { Assert.assertTrue(filter4.mightContain(i * 3)); } }
@Test public void testFrequentItems() { DataFrame df = context.table("testData2"); String[] cols = {"a"}; DataFrame results = df.stat().freqItems(cols, 0.2); Assert.assertTrue(results.collect()[0].getSeq(0).contains(1)); }
@Test public void testCovariance() { DataFrame df = context.table("testData2"); Double result = df.stat().cov("a", "b"); Assert.assertTrue(Math.abs(result) < 1.0e-6); }
@Test public void testCorrelation() { DataFrame df = context.table("testData2"); Double pearsonCorr = df.stat().corr("a", "b", "pearson"); Assert.assertTrue(Math.abs(pearsonCorr) < 1.0e-6); }