private static IList<IList<IAgent>> clusteringUsingWeka( final IScope scope, final Clusterer clusterer, final IList<String> attributes, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) throws GamaRuntimeException { Instances dataset = convertToInstances(scope, attributes, agents); try { clusterer.buildClusterer(dataset); IList<IList<IAgent>> groupes = GamaListFactory.create(Types.LIST.of(Types.AGENT)); for (int i = 0; i < clusterer.numberOfClusters(); i++) { groupes.add(GamaListFactory.<IAgent>create(Types.AGENT)); } for (int i = 0; i < dataset.numInstances(); i++) { Instance inst = dataset.instance(i); int clusterIndex = -1; clusterIndex = clusterer.clusterInstance(inst); IList<IAgent> groupe = groupes.get(clusterIndex); groupe.add(agents.get(scope, i)); } return groupes; } catch (Exception e) { return null; } }
@operator( value = {"percent_absolute_deviation"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.STATISTIC}) @doc( value = "percent absolute deviation indicator for 2 series of values: percent_absolute_deviation(list_vals_observe,list_vals_sim)", examples = { @example( value = "percent_absolute_deviation([200,300,150,150,200],[250,250,100,200,200])", isExecutable = false) }) public static double percentAbsoluteDeviation( final IScope scope, final IList<Double> vals1, final IList<Double> vals2) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } double sum = 0; double coeff = 0; for (int i = 0; i < nb; i++) { double val1 = Cast.asFloat(scope, vals1.get(i)); double val2 = Cast.asFloat(scope, vals2.get(i)); coeff += val1; sum += FastMath.abs(val1 - val2) * 100.0; } if (coeff == 0) { return 0; } return sum / coeff; }
private static double[] computeXaXs( final IScope scope, final IAgentFilter filter, final Map<Object, Integer> categoriesId, final Map<IAgent, Integer> agsId, final int valObsId, final int valSimId, final int valInitId, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IAgent agent, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IContainer.Addressable<Integer, IAgent> agents, final int nbCat) { double xa = 0.0; double xs = 0.0; double[] XaXs = new double[2]; double sizeNorm = FastMath.sqrt(agent.getEnvelope().getArea()); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, agent, distance, filter)); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(agent, 1.0); for (IAgent ag : neighbors) { double euclidDist = agent.getLocation().euclidianDistanceTo(ag.getLocation()); distancesCoeff.put(ag, 1 / (1.0 + euclidDist / sizeNorm)); } for (IAgent ag : distancesCoeff.keySet()) { int id = agsId.get(ag); Object valI = valsInit.get(id); Object valO = valsObs.get(id); Object valS = valsSim.get(id); int valOId = categoriesId.get(valO); int valSId = categoriesId.get(valS); int valIId = categoriesId.get(valI); double dist = distancesCoeff.get(ag); double valxatmp = fuzzyTransition(scope, fuzzytransitions, nbCat, valInitId, valSimId, valIId, valOId) * dist; double valxstmp = fuzzyTransition(scope, fuzzytransitions, nbCat, valInitId, valObsId, valIId, valSId) * dist; if (valxatmp > xa) { xa = valxatmp; } if (valxstmp > xs) { xs = valxstmp; } } XaXs[0] = xa; XaXs[1] = xs; return XaXs; }
private static Instances convertToInstances( final IScope scope, final IList<String> attributes, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) throws GamaRuntimeException { FastVector attribs = new FastVector(); for (String att : attributes) { attribs.addElement(new Attribute(att)); } Instances dataset = new Instances(scope.getAgentScope().getName(), attribs, agents.length(scope)); for (IAgent ag : agents.iterable(scope)) { int nb = attributes.size(); double vals[] = new double[nb]; for (int i = 0; i < nb; i++) { String attrib = attributes.get(i); Double var = Cast.asFloat(scope, ag.getDirectVarValue(scope, attrib)); vals[i] = var; } Instance instance = new Instance(1, vals); dataset.add(instance); } return dataset; }
@Override public IList<ISpecies> getMicroSpecies() { final IList<ISpecies> retVal = GamaListFactory.create(Types.SPECIES); retVal.addAll(microSpecies.values()); final ISpecies parentSpecies = this.getParentSpecies(); if (parentSpecies != null) { retVal.addAll(parentSpecies.getMicroSpecies()); } return retVal; }
@Override public IList<ISpecies> getSubSpecies(final IScope scope) { IList<ISpecies> subspecies = GamaListFactory.create(Types.SPECIES); GamlModelSpecies model = (GamlModelSpecies) scope.getModel().getSpecies(); for (ISpecies s : model.getAllSpecies().values()) { if (s.getParentSpecies() == this) { subspecies.add(s); } } return subspecies; }
@Override public GamaMap mapValue( final IScope scope, final IType keyType, final IType contentsType, final boolean copy) throws GamaRuntimeException { final IList<IAgent> agents = listValue(scope, contentsType, false); // Default behavior : Returns a map containing the names of agents as keys and the agents // themselves as values final GamaMap result = GamaMapFactory.create(Types.STRING, scope.getModelContext().getTypeNamed(getName())); for (final IAgent agent : agents.iterable(scope)) { result.put(agent.getName(), agent); } return result; }
private static void computeXYCrispVector( final IScope scope, final Map<Object, Integer> categoriesId, final List<Object> categories, final IList<Object> vals1, final IList<Object> vals2, final GamaMatrix<Double> fuzzycategories, final int nbCat, final int nb, final double[][] crispVector1, final double[][] crispVector2, final double[] X, final double[] Y, final boolean[] sim, final IList<Object> weights) { for (int j = 0; j < nbCat; j++) { X[j] = 0; Y[j] = 0; } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = vals1.get(i); Object val2 = vals2.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); X[indexVal1] += weight; Y[indexVal2] += weight; for (int j = 0; j < nbCat; j++) { crispVector1[i][j] = Cast.asFloat(scope, fuzzycategories.get(scope, indexVal1, j)); crispVector2[i][j] = Cast.asFloat(scope, fuzzycategories.get(scope, indexVal2, j)); } if (val1.equals(val2)) { sim[i] = true; } else { sim[i] = false; } } for (int j = 0; j < nbCat; j++) { X[j] /= total; Y[j] /= total; } }
private static int buildRings( final IScope scope, final IAgentFilter filter, final Double distance, final List<Double> rings, final Map<Double, Integer> ringsPn, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) { IList<ILocation> locs = GamaListFactory.create(Types.POINT); for (IAgent ag : agents.iterable(scope)) { locs.add(ag.getLocation()); } ILocation centralLoc = (ILocation) Stats.getMean(scope, locs); IAgent centralAg = scope.getTopology().getAgentClosestTo(scope, centralLoc, filter); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, centralAg, distance, filter)); for (IAgent ag : neighbors) { double dist = centralLoc.euclidianDistanceTo(ag.getLocation()); if (dist == 0) { continue; } if (!rings.contains(dist)) { rings.add(dist); ringsPn.put(dist, 1); } else { ringsPn.put(dist, 1 + ringsPn.get(dist)); } } Collections.sort(rings); for (int i = 1; i < rings.size(); i++) { double dist = rings.get(i); double dist1 = rings.get(i - 1); ringsPn.put(dist, ringsPn.get(dist) + ringsPn.get(dist1)); } return rings.size(); }
private static double computePo( final IScope scope, final IAgentFilter filter, final Map<Object, Integer> categoriesId, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { Object valObs = valsObs.get(i); Object valSim = valsSim.get(i); Object valInit = valsInit.get(i); int valObsId = categoriesId.get(valObs); int valSimId = categoriesId.get(valSim); int valInitId = categoriesId.get(valInit); IAgent agent = agents.get(scope, i); double[] XaXs = computeXaXs( scope, filter, categoriesId, agsId, valObsId, valSimId, valInitId, fuzzytransitions, distance, agent, valsInit, valsObs, valsSim, agents, nbCat); similarities.add(FastMath.min(XaXs[0], XaXs[1])); } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
private static double computeSimilarity( final IScope scope, final IAgentFilter filter, final Double distance, final IList<Object> vals1, final IList<Object> vals2, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final double[][] crispVector1, final double[][] crispVector2, final boolean[] sim, final double[][] fuzzyVector1, final double[][] fuzzyVector2, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { if (sim[i]) { similarities.add(1.0); } else { IAgent agent = agents.get(scope, i); // double sizeNorm = agent.getPerimeter() / 4.0; double sizeNorm = FastMath.sqrt(agent.getEnvelope().getArea()); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, agent, distance, filter)); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(agent, 1.0); for (IAgent ag : neighbors) { double euclidDist = agent.getLocation().euclidianDistanceTo(ag.getLocation()); distancesCoeff.put(ag, 1 / (1.0 + euclidDist / sizeNorm)); } for (int j = 0; j < nbCat; j++) { double max1 = 0.0; double max2 = 0.0; for (IAgent ag : neighbors) { int id = agsId.get(ag); double val1 = crispVector1[id][j] * distancesCoeff.get(ag); double val2 = crispVector2[id][j] * distancesCoeff.get(ag); if (val1 > max1) { max1 = val1; } if (val2 > max2) { max2 = val2; } } fuzzyVector1[i][j] = max1; fuzzyVector2[i][j] = max2; } double s1Max = -1 * Double.MAX_VALUE; double s2Max = -1 * Double.MAX_VALUE; for (int j = 0; j < nbCat; j++) { double s1 = FastMath.min(fuzzyVector1[i][j], crispVector2[i][j]); double s2 = FastMath.min(fuzzyVector2[i][j], crispVector1[i][j]); if (s1 > s1Max) { s1Max = s1; } if (s2 > s2Max) { s2Max = s2; } } similarities.add(FastMath.min(s1Max, s2Max)); } } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
private static void computeXaXsTransitions( final IScope scope, final IAgentFilter filter, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IContainer<Integer, IAgent> agents, final int nbCat, final Map<List<Integer>, Map<Double, Double>> XaPerTransition, final Map<List<Integer>, Map<Double, Double>> XsPerTransition, final Set<Double> Xvals) { IList<ILocation> locs = GamaListFactory.create(Types.POINT); for (IAgent ag : agents.iterable(scope)) { locs.add(ag.getLocation()); } ILocation centralLoc = (ILocation) Stats.getMean(scope, locs); if (filter != null) { IAgent centralAg = scope.getTopology().getAgentClosestTo(scope, centralLoc, filter); List<IAgent> neighbors = distance == 0 ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, centralAg, distance, filter)); double sizeNorm = FastMath.sqrt(centralAg.getEnvelope().getArea()); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(centralAg, 1.0); for (IAgent ag : neighbors) { double euclidDist = centralAg.getLocation().euclidianDistanceTo(ag.getLocation()); double dist = 1 / (1.0 + euclidDist / sizeNorm); distancesCoeff.put(ag, dist); } for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList(); ca.add(i); ca.add(j); ca.add(k); double xa = 0; double xs = 0; for (IAgent ag : distancesCoeff.keySet()) { double dist = distancesCoeff.get(ag); double xatmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, k, i, j) * dist; double xstmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, j, i, k) * dist; if (xatmp > xa) { xa = xatmp; } if (xstmp > xs) { xs = xstmp; } } if (xa > 0) { Map<Double, Double> mapxa = XaPerTransition.get(ca); if (mapxa == null) { mapxa = new TOrderedHashMap<Double, Double>(); mapxa.put(xa, 1.0); XaPerTransition.put(ca, mapxa); } else { if (mapxa.containsKey(xa)) { mapxa.put(xa, mapxa.get(xa) + 1.0); } else { mapxa.put(xa, 1.0); } } Xvals.add(xa); } if (xs > 0) { Map<Double, Double> mapxs = XsPerTransition.get(ca); if (mapxs == null) { mapxs = new TOrderedHashMap<Double, Double>(); mapxs.put(xs, 1.0); XsPerTransition.put(ca, mapxs); } else { if (mapxs.containsKey(xa)) { mapxs.put(xs, mapxs.get(xs) + 1.0); } else { mapxs.put(xs, 1.0); } } Xvals.add(xs); } } } } } }
@operator( value = {"kappa"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories, weights). Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20. ", examples = { @example( value = "kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3], [1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappa( final IScope scope, final IList<Object> vals1, final IList<Object> vals2, final List<Object> categories, final IList<Object> weights) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } int nbCat = categories.size(); double[] X = new double[nbCat]; double[] Y = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { X[j] = 0; Y[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = vals1.get(i); Object val2 = vals2.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); X[indexVal1] += weight; Y[indexVal2] += weight; contigency[indexVal1][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { X[j] /= total; Y[j] /= total; for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; } } double po = 0; double pe = 0; for (int i = 0; i < nbCat; i++) { po += contigency[i][i]; pe += X[i] * Y[i]; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"fuzzy_kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.MAP}) @doc( value = "fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, ", examples = { @example( value = "fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappaSimulation( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } similarities.clear(); int nbCat = categories.size(); double[] nbObs = new double[nbCat]; double[] nbSim = new double[nbCat]; double[] nbInit = new double[nbCat]; double[][] nbInitObs = new double[nbCat][nbCat]; double[][] nbInitSim = new double[nbCat][nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); Map<List<Integer>, Map<Double, Double>> XaPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Map<List<Integer>, Map<Double, Double>> XsPerTransition = new TOrderedHashMap<List<Integer>, Map<Double, Double>>(); Set<Double> Xvals = new HashSet<Double>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } for (int i = 0; i < nbCat; i++) { nbInit[i] = 0; nbObs[i] = 0; nbSim[i] = 0; for (int j = 0; j < nbCat; j++) { nbInitObs[i][j] = 0; nbInitSim[i][j] = 0; } } IAgentFilter filter = In.list(scope, agents); double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; int idCatInit = categoriesId.get(valsInit.get(i)); int idCatObs = categoriesId.get(valsObs.get(i)); int idCatSim = categoriesId.get(valsSim.get(i)); nbInit[idCatInit] += weight; nbSim[idCatSim] += weight; nbObs[idCatObs] += weight; nbInitObs[idCatInit][idCatObs] += weight; nbInitSim[idCatInit][idCatSim] += weight; } double po = computePo( scope, filter, categoriesId, fuzzytransitions, distance, valsInit, valsObs, valsSim, agents, nbCat, nb, similarities, weights); double pe = 0; computeXaXsTransitions( scope, filter, fuzzytransitions, distance, agents, nbCat, XaPerTransition, XsPerTransition, Xvals); for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList<Integer>(); ca.add(i); ca.add(j); ca.add(k); Map<Double, Double> pmuXa = XaPerTransition.get(ca); Map<Double, Double> pmuXs = XsPerTransition.get(ca); double emu = 0; for (Double xval : Xvals) { double XaVal = pmuXa == null || !pmuXa.containsKey(xval) ? 0 : pmuXa.get(xval); double XsVal = pmuXs == null || !pmuXs.containsKey(xval) ? 0 : pmuXs.get(xval); double proba = xval * XaVal * XsVal; emu += proba; } double poas = nbInit[i] == 0 ? 0 : nbInitObs[i][j] / nbInit[i] * nbInitSim[i][k] / total; pe += emu * poas; } } } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"fuzzy_kappa"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance, weights). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21", examples = { @example( value = "fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])", isExecutable = false) }) public static double fuzzyKappa( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<Object> vals1, final IList<Object> vals2, final IList<Double> similarities, final List<Object> categories, final GamaMatrix<Double> fuzzycategories, final Double distance, final IList<Object> weights) { if (agents == null) { return 1; } int nb = agents.length(scope); if (nb < 1) { return 1; } int nbCat = categories.size(); similarities.clear(); boolean[] sim = new boolean[nb]; double[][] crispVector1 = new double[nb][nbCat]; double[][] crispVector2 = new double[nb][nbCat]; double[][] fuzzyVector1 = new double[nb][nbCat]; double[][] fuzzyVector2 = new double[nb][nbCat]; double[] X = new double[nbCat]; double[] Y = new double[nbCat]; Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } IAgentFilter filter = In.list(scope, agents); computeXYCrispVector( scope, categoriesId, categories, vals1, vals2, fuzzycategories, nbCat, nb, crispVector1, crispVector2, X, Y, sim, weights); double meanSimilarity = computeSimilarity( scope, filter, distance, vals1, vals2, agents, nbCat, nb, crispVector1, crispVector2, sim, fuzzyVector1, fuzzyVector2, similarities, weights); List<Double> rings = new ArrayList<Double>(); Map<Double, Integer> ringsPn = new TOrderedHashMap<Double, Integer>(); int nbRings = buildRings(scope, filter, distance, rings, ringsPn, agents); double similarityExpected = computeExpectedSim(nbCat, X, Y, nbRings, rings, ringsPn); if (similarityExpected == 1) { return 1; } return (meanSimilarity - similarityExpected) / (1 - similarityExpected); }
@operator( value = {"kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_valsSim, categories, weights). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling 222(8)", examples = { @example( value = "kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2,cat1,cat2,cat3,cat3], [cat1,cat2,cat3],[1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappaSimulation( final IScope scope, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final List<Object> categories, final IList<Object> weights) { if (valsInit == null || valsObs == null || valsSim == null) { return 1; } int nb = valsInit.size(); if (nb != valsObs.size() || nb != valsSim.size()) { return 0; } int nbCat = categories.size(); double[] O = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; double[][] contigencyOA = new double[nbCat][nbCat]; double[][] contigencyOS = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { O[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; contigencyOA[j][k] = 0; contigencyOS[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = valsObs.get(i); Object val2 = valsSim.get(i); Object valO = valsInit.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); int indexValO = categoriesId.get(valO); O[indexValO] += weight; contigency[indexVal1][indexVal2] += weight; contigencyOA[indexValO][indexVal1] += weight; contigencyOS[indexValO][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; if (O[j] > 0) { contigencyOA[j][k] /= O[j]; contigencyOS[j][k] /= O[j]; } } O[j] /= total; } double po = 0; double pe = 0; for (int j = 0; j < nbCat; j++) { po += contigency[j][j]; double sum = 0; for (int i = 0; i < nbCat; i++) { sum += contigencyOA[j][i] * contigencyOS[j][i]; } pe += O[j] * sum; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }