/** * Creates a LZ09_F2 problem instance * * @param solutionType The solution type must "Real" or "BinaryReal". */ public LZ09_F2(String solutionType, Integer ptype, Integer dtype, Integer ltype) throws ClassNotFoundException { numberOfVariables_ = 30; numberOfObjectives_ = 2; numberOfConstraints_ = 0; problemName_ = "LZ09_F2"; LZ09_ = new LZ09(numberOfVariables_, numberOfObjectives_, ptype, dtype, ltype); lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; lowerLimit_[0] = 0.0; upperLimit_[0] = 1.0; for (int var = 1; var < numberOfVariables_; var++) { lowerLimit_[var] = -1.0; upperLimit_[var] = 1.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // LZ09_F2
double fitnessFunction(Solution individual, double[] lambda) { double fitness; fitness = 0.0; if (functionType_.equals("_TCHE1")) { double maxFun = -1.0e+30; for (int n = 0; n < problem_.getNumberOfObjectives(); n++) { double diff = Math.abs(individual.getObjective(n) - z_[n]); double feval; if (lambda[n] == 0) { feval = 0.0001 * diff; } else { feval = diff * lambda[n]; } if (feval > maxFun) { maxFun = feval; } } // for fitness = maxFun; } // if else if (functionType_.equals("_AGG")) { double sum = 0.0; for (int n = 0; n < problem_.getNumberOfObjectives(); n++) { sum += (lambda[n]) * individual.getObjective(n); } fitness = sum; } else if (functionType_.equals("_PBI")) { double d1, d2, nl; double theta = 5.0; d1 = d2 = nl = 0.0; for (int i = 0; i < problem_.getNumberOfObjectives(); i++) { d1 += (individual.getObjective(i) - z_[i]) * lambda[i]; nl += Math.pow(lambda[i], 2.0); } nl = Math.sqrt(nl); d1 = Math.abs(d1) / nl; for (int i = 0; i < problem_.getNumberOfObjectives(); i++) { d2 += Math.pow((individual.getObjective(i) - z_[i]) - d1 * (lambda[i] / nl), 2.0); } d2 = Math.sqrt(d2); fitness = (d1 + theta * d2); } else { System.out.println("MOEAD.fitnessFunction: unknown type " + functionType_); System.exit(-1); } return fitness; } // fitnessEvaluation
public void readProblem(String fileName) throws FileNotFoundException, IOException { Reader inputFile = new BufferedReader(new InputStreamReader(new FileInputStream(fileName))); StreamTokenizer token = new StreamTokenizer(inputFile); try { token.nextToken(); numberOfCities_ = (int) token.nval; distanceMatrix_ = new double[numberOfCities_][numberOfCities_]; flujo1 = new double[numberOfCities_][numberOfCities_]; flujo2 = new double[numberOfCities_][numberOfCities_]; // Cargar objetivo 1 for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); flujo1[k][j] = token.nval; } } // Cargar objetivo 2 for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); flujo2[k][j] = token.nval; } } // Carga de distancias for (int k = 0; k < numberOfCities_; k++) { for (int j = 0; j < numberOfCities_; j++) { token.nextToken(); distanceMatrix_[k][j] = token.nval; } } } // try catch (Exception e) { System.err.println("QAP.readProblem(): error when reading data file " + e); System.exit(1); } // catch } // readProblem
/** * Constructor. Creates a default instance of the Srinivas problem * * @param solutionType The solution type must "Real" or "BinaryReal". */ public Srinivas(String solutionType) throws ClassNotFoundException { numberOfVariables_ = 2; numberOfObjectives_ = 2; numberOfConstraints_ = 2; problemName_ = "Srinivas"; lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = -20.0; upperLimit_[var] = 20.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // Srinivas
/** * Creates a new DTLZ5 problem instance * * @param numberOfVariables Number of variables * @param numberOfObjectives Number of objective functions * @param solutionType The solution type must "Real" or "BinaryReal". */ public DTLZ5(String solutionType, Integer numberOfVariables, Integer numberOfObjectives) throws ClassNotFoundException { numberOfVariables_ = numberOfVariables.intValue(); numberOfObjectives_ = numberOfObjectives.intValue(); numberOfConstraints_ = 0; problemName_ = "DTLZ5"; lowerLimit_ = new double[numberOfVariables_]; upperLimit_ = new double[numberOfVariables_]; for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = 0.0; upperLimit_[var] = 1.0; } if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // DTLZ5
/** * Creates a new instance of problem CEC2009_UF10. * * @param numberOfVariables Number of variables. * @param solutionType The solution type must "Real" or "BinaryReal". */ public CEC2009_UF10(String solutionType, Integer numberOfVariables) throws ClassNotFoundException { numberOfVariables_ = numberOfVariables.intValue(); numberOfObjectives_ = 3; numberOfConstraints_ = 0; problemName_ = "CEC2009_UF10"; upperLimit_ = new double[numberOfVariables_]; lowerLimit_ = new double[numberOfVariables_]; // Establishes upper and lower limits for the variables for (int var = 0; var < numberOfVariables_; var++) { lowerLimit_[var] = 0.0; upperLimit_[var] = 1.0; } // for if (solutionType.compareTo("BinaryReal") == 0) solutionType_ = new BinaryRealSolutionType(this); else if (solutionType.compareTo("Real") == 0) solutionType_ = new RealSolutionType(this); else { System.out.println("Error: solution type " + solutionType + " invalid"); System.exit(-1); } } // CEC2009_UF10