public List<Integer> tour_selection(int depth) { // selection based on utility List<Integer> selected = new ArrayList<Integer>(); List<Integer> candidate = new ArrayList<Integer>(); for (int k = 0; k < problem_.getNumberOfObjectives(); k++) { selected.add( k); // WARNING! HERE YOU HAVE TO USE THE WEIGHT PROVIDED BY QINGFU (NOT SORTED!!!!) } for (int n = problem_.getNumberOfObjectives(); n < populationSize; n++) { candidate.add(n); // set of unselected weights } while (selected.size() < (int) (populationSize / 5.0)) { // int best_idd = (int) (rnd_uni(&rnd_uni_init)*candidate.size()), i2; int best_idd = (int) (PseudoRandom.randDouble() * candidate.size()); // System.out.println(best_idd); int i2; int best_sub = candidate.get(best_idd); int s2; for (int i = 1; i < depth; i++) { i2 = (int) (PseudoRandom.randDouble() * candidate.size()); s2 = candidate.get(i2); // System.out.println("Candidate: "+i2); if (utility_[s2] > utility_[best_sub]) { best_idd = i2; best_sub = s2; } } selected.add(best_sub); candidate.remove(best_idd); } return selected; }
/** * @author Juanjo This method selects N solutions from a set M, where N <= M using the same method * proposed by Qingfu Zhang, W. Liu, and Hui Li in the paper describing MOEA/D-DRA (CEC 09 * COMPTETITION) An example is giving in that paper for two objectives. If N = 100, then the * best solutions attenting to the weights (0,1), (1/99,98/99), ...,(98/99,1/99), (1,0) are * selected. * <p>Using this method result in 101 solutions instead of 100. We will just compute 100 even * distributed weights and used them. The result is the same * <p>In case of more than two objectives the procedure is: 1- Select a solution at random 2- * Select the solution from the population which have maximum distance to it (whithout * considering the already included) * @param n: The number of solutions to return * @return A solution set containing those elements */ SolutionSet finalSelection(int n) throws JMException { SolutionSet res = new SolutionSet(n); if (problem_.getNumberOfObjectives() == 2) { // subcase 1 double[][] intern_lambda = new double[n][2]; for (int i = 0; i < n; i++) { double a = 1.0 * i / (n - 1); intern_lambda[i][0] = a; intern_lambda[i][1] = 1 - a; } // for // we have now the weights, now select the best solution for each of them for (int i = 0; i < n; i++) { Solution current_best = population.get(0); int index = 0; double value = fitnessFunction(current_best, intern_lambda[i]); for (int j = 1; j < n; j++) { double aux = fitnessFunction( population.get(j), intern_lambda[i]); // we are looking the best for the weight i if (aux < value) { // solution in position j is better! value = aux; current_best = population.get(j); } } res.add(new Solution(current_best)); } } else { // general case (more than two objectives) Distance distance_utility = new Distance(); int random_index = PseudoRandom.randInt(0, population.size() - 1); // create a list containing all the solutions but the selected one (only references to them) List<Solution> candidate = new LinkedList<Solution>(); candidate.add(population.get(random_index)); for (int i = 0; i < population.size(); i++) { if (i != random_index) { candidate.add(population.get(i)); } } // for while (res.size() < n) { int index = 0; Solution selected = candidate.get(0); // it should be a next! (n <= population size!) double distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(selected, res); int i = 1; while (i < candidate.size()) { Solution next_candidate = candidate.get(i); double aux = distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(next_candidate, res); if (aux > distance_value) { distance_value = aux; index = i; } i++; } // add the selected to res and remove from candidate list res.add(new Solution(candidate.remove(index))); } // } return res; }