/* * Recover the maximizing variables going back through the maximizing * bucket_tree; the variables are returned as an array of markers * (non-explanation variables get INVALID_INDEX). */ private int[] backward_maximization() { int i, j; int bi = bucket_tree.length - 1; DiscreteFunction back_df; Bucket b = bucket_tree[bi]; // If there are no explanation variables in the BayesNet, return null if (b.backward_pointers == null) return (null); // Initialize the markers for backward pointers with INVALID_INDEX int backward_markers[] = new int[bn.number_variables()]; for (i = 0; i < backward_markers.length; i++) backward_markers[i] = BayesNet.INVALID_INDEX; // Initialize the marker for the last bucket backward_markers[b.variable.get_index()] = (int) (b.backward_pointers.get_value(0) + 0.5); // Go backwards through the bucket_tree for (i = (bi - 1); i >= 0; i--) { if (!bucket_tree[i].is_explanation()) break; back_df = bucket_tree[i].backward_pointers; // Skip null pointers (caused by evidence) if (back_df == null) continue; // Special treatment for bucket with only one value, // since it can be a bucket with only the bucket variable left if (back_df.number_values() == 1) { backward_markers[bucket_tree[i].variable.get_index()] = (int) (back_df.get_value(0) + 0.5); continue; } // Process the bucket j = back_df.get_position_from_indexes(bn.get_probability_variables(), backward_markers); backward_markers[bucket_tree[i].variable.get_index()] = (int) (back_df.get_value(j) + 0.5); } return (backward_markers); }
/* * Put a DiscreteFunction into the BucketTree beyond the current * active_bucket. If was_first_variable_cancelled_by_evidence is true, then * mark the bucket accordingly. */ private void insert(DiscreteFunction df, boolean was_first_variable_cancelled_by_evidence) { int i, index; Bucket b; for (i = active_bucket; i < bucket_tree.length; i++) { index = bucket_tree[i].variable.get_index(); if (df.memberOf(index)) { bucket_tree[i].discrete_functions.addElement(df); // If the function is a ProbabilityFunction, store its // first variable appropriately (assuming for now that // the first variable is the only possible non-conditioning // variable). if ((df instanceof ProbabilityFunction) && (!was_first_variable_cancelled_by_evidence)) { bucket_tree[i].non_conditioning_variables.addElement(df.get_variable(0)); } return; } } }
/** Print method for BucketTree. */ public void print(PrintStream out) { out.println("BucketTree:" + "\n\tActive Bucket is " + active_bucket + "."); for (int i = 0; i < bucket_tree.length; i++) bucket_tree[i].print(out); out.println("Bucket result: "); unnormalized_result.print(out); }