public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int m = scanner.nextInt(); assert 1 <= m && m <= 100 : "out of range, m: " + m; int s = scanner.nextInt(); assert 0 <= s && s <= 900 : "out of range, s: " + s; if (s > 9 * m || (s == 0 && m > 1)) { System.out.println("-1 -1"); return; } if (m == 1 && s == 0) { System.out.println("0 0"); return; } StringBuilder sb = new StringBuilder(); int l = 0; for (int i = 0; i < m; i++) { int d = (s >= 9) ? 9 : s; sb.append(d); s -= d; if (d != 0) { l = i; } } String large = sb.toString(); if (sb.charAt(m - 1) == '0') { sb.setCharAt(l, (char) (sb.charAt(l) - 1)); sb.setCharAt(m - 1, '1'); } String small = sb.reverse().toString(); System.out.printf("%s %s", small, large); }
/** Return next string in the sequence "a", "b", ... "z", "aa", "ab", ... */ static String getNextDirName(String old) { StringBuilder sb = new StringBuilder(old); // go through and increment the first non-'z' char // counts back from the last char, so 'aa'->'ab', not 'ba' for (int ii = sb.length() - 1; ii >= 0; ii--) { char curChar = sb.charAt(ii); if (curChar < 'z') { sb.setCharAt(ii, (char) (curChar + 1)); return sb.toString(); } sb.setCharAt(ii, 'a'); } sb.insert(0, 'a'); return sb.toString(); }
/** * Replace given characters in a given string builder. * The number of characters to replace has to match to number of * characters serving as a replacement. * * @param sb string builder containing a string to be modified * @param from characters to replaced * @param to replacement characters * @return original string builder with replaced characters. */ public static StringBuilder replace(StringBuilder sb, CharSequence from, CharSequence to) { assert from.length() == to.length(); for (int i=0; i<sb.length(); i++) for (int j=0; j<from.length(); j++) if (sb.charAt(i)==from.charAt(j)) sb.setCharAt(i, to.charAt(j)); return sb; }
public int ladderLength1(String beginWord, String endWord, Set<String> wordList) { Set<String> startList = new HashSet<String>(); Set<String> endList = new HashSet<String>(); startList.add(beginWord); endList.add(endWord); int result = 1; while (!startList.isEmpty() && !endList.isEmpty()) { if (startList.size() > endList.size()) { Set<String> k = startList; startList = endList; endList = k; } Set<String> newSet = new HashSet<String>(); for (String word : startList) { for (int i = 0; i < word.length(); i++) { for (char a = 'a'; a <= 'z'; a++) { if (a == word.charAt(i)) continue; StringBuilder temp = new StringBuilder(word); temp.setCharAt(i, a); String newString = temp.toString(); if (endList.contains(newString)) return result + 1; if (wordList.contains(newString)) { wordList.remove(newString); newSet.add(newString); } } } } startList = newSet; result++; } return 0; }
private void markFiltered( StringBuilder text, int start, int end, Token filtered, Map<Integer, Token> filteredTokenMap) { for (int i = start; i < end; i++) { filteredTokenMap.put(i, filtered); text.setCharAt(i, PREDEFINED_TOKEN_REPLACEMENT); } }
/** * Converts a map of results to a String JSON representation for it * * @param map a map that matches properties with an ArrayList of values * @return the JSON representation for the map, as a String */ private String mapToString(Map<String, ArrayList<String>> map) { StringBuilder result = new StringBuilder("{"); for (Map.Entry<String, ArrayList<String>> entry : map.entrySet()) { ArrayList<String> value = entry.getValue(); if (value.size() == 1) result.append(String.format("\"%s\" : %s,\n", entry.getKey(), value.get(0))); else result.append(String.format("\"%s\" : %s,\n", entry.getKey(), value.toString())); } result.setCharAt(result.length() - 2, '}'); return result.toString(); }
// *******initialize******* domain with cells void resetCells() { // int radius=50; dont think this is used Cells = new int[size][size]; carriedmutation = new int[size][size]; // Fill the domain with healthy cells 0's first. for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) { Cells[i][j] = 0; carriedmutation[i][j] = 0; } Cells[centre][centre] = 1; // initialize with a stem cell if you like carriedmutation[centre][centre] = 1; // the first cancer cell carries the tag '1' to start genomeToMod = new StringBuilder(carriedGenome[centre][centre]); genomeToMod.setCharAt(mutationNum - 1, '1'); // daughter carries new carriedGenome carriedGenome[centre][centre] = genomeToMod; // genomeToMod = carriedGenome[centre][centre]; }
public WcsCoverage(GridDataset.Gridset coverage, WcsDataset dataset) { this.dataset = dataset; if (this.dataset == null) { log.error("WcsCoverage(): non-null dataset required."); throw new IllegalArgumentException("Non-null dataset required."); } this.coverage = coverage; if (this.coverage == null) { log.error("WcsCoverage(): non-null coverage required."); throw new IllegalArgumentException("Non-null coverage required."); } this.coordSys = coverage.getGeoCoordSystem(); if (this.coordSys == null) { log.error("WcsCoverage(): Coverage must have non-null coordinate system."); throw new IllegalArgumentException("Non-null coordinate system required."); } this.name = this.coordSys.getName(); this.label = this.coordSys.getName(); this.range = new HashMap<String, WcsRangeField>(); StringBuilder descripSB = new StringBuilder("All parameters on the \"") .append(this.name) .append("\" coordinate system: "); for (GridDatatype curField : this.coverage.getGrids()) { String stdName = curField.findAttValueIgnoreCase("standard_name", ""); descripSB.append(stdName.length() == 0 ? curField.getFullName() : stdName).append(","); WcsRangeField field = new WcsRangeField(curField); range.put(field.getName(), field); } descripSB.setCharAt(descripSB.length() - 1, '.'); this.description = descripSB.toString(); this.nativeCRS = EPSG_OGC_CF_Helper.getWcs1_0CrsId(this.coordSys.getProjection()); this.defaultRequestCrs = "OGC:CRS84"; this.supportedCoverageFormatList = new ArrayList<WcsRequest.Format>(); // this.supportedCoverageFormatList = "application/x-netcdf"; this.supportedCoverageFormatList.add(WcsRequest.Format.GeoTIFF); this.supportedCoverageFormatList.add(WcsRequest.Format.GeoTIFF_Float); this.supportedCoverageFormatList.add(WcsRequest.Format.NetCDF3); }
// main CELL CA loop************ public boolean iterateCells() { /* // modify consumption matrix for (int i=0;i<size;i++) for (int j=0;j<size;j++) consumption[i][j] = consumptionBasal[Cells[i][j]]; */ // if (cellList == null) cellList = new Bag(size * size); for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) { if (Cells[i][j] < 4) { // All tumour cell types have Cell > 0, now 0 corresponds to 'healthy cells' that // consume at basal rate only int[] p = new int[2]; p[0] = i; p[1] = j; cellList.add(p); if (Cells[i][j] == 1) { stem_cells_this_TS++; } else if (Cells[i][j] == 2 || Cells[i][j] == 3) { non_stem_cells_this_TS++; } } } while (cellList.size() != 0) { // Select the next lattice element at random int randomElemIndex = 0; if (cellList.size() > 1) randomElemIndex = random.nextInt(cellList.size() - 1); int[] point = (int[]) cellList.get(randomElemIndex); int rI = point[0]; int rJ = point[1]; cellList.remove(randomElemIndex); // Remove it from the cell list int cell = Cells[rI][rJ]; // Cell death // if ((Oxygen[rI][rJ]<hypoxia)) { if ((random.nextFloat() < deathprob) && Cells[rI][rJ] > 0) { // x% chances of dying Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if (Cells[rI][rJ] < 4) { // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) deaths++; stemBirthCounter[rI][rJ] = 0; carriedmutation[rI][rJ] = 0; // empty space now has no mutations carriedGenome[rI][rJ] = initGenome; // empty space now has no mutations } } else if ((cell == 3) && (Age[rI][rJ] > 100 * maxMatureCellAge)) { // added * to allow for an update each celltimestep/x // ************************** Age[rI][rJ] = 0; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) // TACDeathCounter[rI][rJ]++; deaths++; } else if ((radiotherapy) && (cell == 2) && (random.nextFloat() > Oxygen[rI][rJ])) { // Radiotherapy Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if ((Cells[rI][rJ] == 2) || (Cells[rI][rJ] == 3)) // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // make necrotic stemBirthCounter[rI][rJ] = 0; deaths++; } // healthy division else if ((cell == 0) && (vacantSites(rI, rJ) > 0)) { if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySite(rI, rJ); births++; Cells[daughter[0]][daughter[1]] = 0; carriedmutation[daughter[0]][daughter[1]] = 0; carriedGenome[daughter[0]][daughter[1]] = initGenome; // resetting space to healthy cell with no mutations } } // } // cancer division else if ((vacantSitesCancer(rI, rJ) > 0) && (cell > 0)) if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... if ((cell == 1) || ((cell == 2) && (Age[rI][rJ] < maxProDivisions))) { // AND the cell is stem or TAC ... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySiteCancer(rI, rJ); // and there is space (for cancer) // if ((daughter[0]==0) || (daughter[0]==size) || // (daughter[1]==0)||(daughter[1]==size)) {simulationFinished=true;} // stop sim if a // cell hits the edge births++; if (cell == 1) { // stem cell stemBirthsTotal[rI][rJ]++; stemBirthCounter[rI][rJ]++; if (asymmetricRatio > random.nextFloat()) { Cells[daughter[0]][daughter[1]] = 1; // placing the stem daughter stemBirthCounter[daughter[0]][daughter[1]] = stemBirthCounter[rI][rJ]; // update stem birth counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // inherit mutational status of parent carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // inherit mutational status of parent if (mutfreq > random.nextFloat()) { // small chance of mutation mutationNum++; // advance mutation number System.out.println( +carriedmutation[rI][rJ] + ", " + mutationNum + ", " + stem_cells_this_TS + ", " + non_stem_cells_this_TS + ", " + timestep); // print (parent,child) pair // tree.put(carriedmutation[rI][rJ], mutationNum); // timeTree.put(mutationNum, timestep); // hash table stuff if (0.5 > random.nextFloat()) { carriedmutation[daughter[0]][daughter[1]] = mutationNum; genomeToMod = new StringBuilder(carriedGenome[daughter[0]][daughter[1]]); genomeToMod.setCharAt( mutationNum - 1, '1'); // daughter carries new carriedGenome carriedGenome[daughter[0]][daughter[1]] = genomeToMod; // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } // 50:50 mutate new position daughter else { carriedmutation[rI][rJ] = mutationNum; // else mutate original position daughter genomeToMod = new StringBuilder(carriedGenome[rI][rJ]); // genomeToMod = carriedGenome[rI][rJ]; carriedGenome[rI][rJ] = genomeToMod; genomeToMod.setCharAt( mutationNum - 1, '1'); // original carries new carriedGenome // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } } } else { Cells[daughter[0]][daughter[1]] = 2; // asymmetric division, daughter is TAC stemBirthCounter[daughter[0]][daughter[1]] = 0; // reset stem counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; } // TAC carries parental genome // } // redundant from above // else { // Only if there's hypoxia induced change of symmetric division ratio // float newASR=asymmetricRatio+0*(hypoxia-Oxygen[rI][rJ]); // currently OFF by way of 0 the ^^ multiplier. // if (newASR>random.nextFloat()) // {Cells[daughter[0]][daughter[1]]=1;stemBirthCounter[daughter[0]][daughter[1]]=stemBirthCounter[rI][rJ];} // else // {Cells[daughter[0]][daughter[1]]=2;stemBirthCounter[daughter[0]][daughter[1]]=0;} // // Otherwise differentiate // } } else if (cell == 2) { // non-stem division // TACBirthCounter[rI][rJ]++; if (Age[rI][rJ] < maxProDivisions - 1) { Cells[daughter[0]][daughter[1]] = 2; Age[rI][rJ]++; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } else { Cells[daughter[0]][daughter[1]] = 3; Cells[rI][rJ] = 3; Age[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } } } } else if (pMotility > random.nextFloat()) { // Migration = not in use int[] daughter = findEmptySite(rI, rJ); Cells[daughter[0]][daughter[1]] = cell; Cells[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; Age[rI][rJ] = 0; System.err.println("moving " + rI + ", " + rJ); } // Aging for mature cells if (cell == 3) Age[rI][rJ]++; } return true; }