public int vertexDegree(Vertex v) { int result = 0; Halfedge e = v.getHalfedge(); Halfedge pEdge = e.getNext().getOpposite(); while (pEdge != e) { pEdge = pEdge.getNext().getOpposite(); result++; } return result + 1; }
public String facesToString() { String result = "List of faces\n"; Iterator it = this.facets.iterator(); int cont = 0; while (it.hasNext()) { Face<X> f = (Face<X>) it.next(); result = result + "f" + cont + " "; Halfedge<X> e = f.getEdge(); while (e.getNext() != f.getEdge()) { result = result + vertices.indexOf(e.getVertex()) + " "; e = e.getNext(); } result = result + vertices.indexOf(e.getVertex()) + "\n"; cont++; } return result; }
/** * creates a new triangle facet within the hole incident to h by connecting the tip of h with two * new halfedges and a new vertex. Returns the halfedge of the new edge that is incident to the * new facet and the new vertex. */ public Halfedge<X> addTriangleToBorder(Halfedge h, X point) { if (h.face != null) throw new Error("no border edge"); System.out.println("adding triangle to " + h); Face<X> newFace = new Face<X>(); Vertex<X> newVertex = new Vertex<X>(point); Halfedge<X> hPrev = new Halfedge<X>(); Halfedge<X> hNext = new Halfedge<X>(); Halfedge<X> hPrevOpp = new Halfedge<X>(); Halfedge<X> hNextOpp = new Halfedge<X>(); // setting the new face newFace.setEdge(h); // setting hPrev (halfedge preceding h in the new face) hPrev.setFace(newFace); hPrev.setVertex(h.getOpposite().getVertex()); hPrev.setPrev(hNext); hPrev.setNext(h); hPrev.setOpposite(hPrevOpp); // setting hNext (halfedge following h in the new face) hNext.setFace(newFace); hNext.setVertex(newVertex); hNext.setPrev(h); hNext.setNext(hPrev); hNext.setOpposite(hNextOpp); // setting hPrevOpp (new boundary halfedge) hPrevOpp.setFace(null); hPrevOpp.setVertex(newVertex); hPrevOpp.setPrev(h.getPrev()); hPrevOpp.setNext(hNextOpp); hPrevOpp.setOpposite(hPrev); // setting hNextOpp (the other new boundary halfedge) hNextOpp.setFace(null); hNextOpp.setVertex(h.getVertex()); hNextOpp.setPrev(hPrevOpp); hNextOpp.setNext(h.getNext()); hNextOpp.setOpposite(hNext); // updating old boundary halfedge informations h.setFace(newFace); h.setPrev(hPrev); h.setNext(hNext); // setting newVertex newVertex.setEdge(hPrev); // LCA: a controler si c'est hPrev ou hNext // adding new facet, vertex and the four halfedges this.vertices.add(newVertex); this.facets.add(newFace); this.halfedges.add(hPrev); this.halfedges.add(hNext); this.halfedges.add(hPrevOpp); this.halfedges.add(hNextOpp); return hNext; }
public void createCenterVertex(Face<X> f) { int degree = f.degree(); Point_[] neighbors = new Point_[degree]; Halfedge<X> e = f.getEdge(); neighbors[0] = e.getVertex().getPoint(); for (int i = 1; i < degree; i++) { e = e.getNext(); neighbors[i] = e.getVertex().getPoint(); } Point_ centerVertex; if (neighbors[0].dimension() == 2) centerVertex = new Point_2(); else if (neighbors[0].dimension() == 3) centerVertex = new Point_3(); else throw new Error("error point dimension"); }
/** * returns true if the polyhedral surface is combinatorially consistent. If borders==true * normalization of the border edges is checked too. This method checks that each facet is at * least a triangle and that the two incident facets of a non-border edge are distinct. */ public boolean isValid(boolean borders) { boolean valid = true; System.out.print("Checking Polyhedron..."); int n = this.vertices.size(); int e = this.halfedges.size(); int f = this.facets.size(); for (int i = 0; i < this.halfedges.size(); i++) { Halfedge<X> pedge = this.halfedges.get(i); if (pedge.getOpposite() == null) { System.out.print("error opposite: " + i); valid = false; // Face face=pedge.getFace(); // int[] ind=face.getVertexIndices(this); // System.out.println(" "+ind[0]+" "+ind[1]+" "+ind[2]); } if (pedge.getNext() == null) { System.out.println("error next_edge: " + i); valid = false; } if (pedge.getPrev() == null) { System.out.println("error prev_edge: " + i); valid = false; } if (pedge.getVertex() == null) { System.out.println("error vertex: " + i); valid = false; } if (pedge.opposite != null && pedge.face == pedge.getOpposite().face) { System.out.println("error edge: " + i); valid = false; } } for (int i = 0; i < this.facets.size(); i++) { Face<X> pface = this.facets.get(i); if (pface == null) { System.out.println("error face pointer"); valid = false; } if (pface.halfedge == null) { System.out.println("error face.halfedge"); valid = false; } if (pface.degree() < 3) { System.out.println("error face degree"); return valid = false; } } for (int i = 0; i < this.vertices.size(); i++) { Vertex<X> pvertex = this.vertices.get(i); // System.out.println(""+pvertex.toString()); if (pvertex == null) { System.out.println("error vertex pointer:" + i); valid = false; } if (pvertex.halfedge == null) { System.out.println("error vertex.halfedge: " + i); valid = false; } if (pvertex.getPoint() == null) { System.out.println("error vertex.point: " + i); valid = false; } } if (valid == true) System.out.println("ok"); else System.out.println("not valid"); System.out.print("n: " + n + " e: " + e / 2 + " f: " + f + " - "); int g = -(n - e / 2 + f - 2) / 2; System.out.println("genus: " + g); return valid; }