Example #1
0
  public void checkGameInput() {

    if (drawMode.isPressed()) {
      octree.setRenderMode(!octree.isRenderMode());
      octree.setObjectColliding(false);
      if (octree.isRenderMode()) {
        glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // Render the triangles in fill mode
      } else {
        glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // Render the triangles in wire frame mode
      }
      octree.createDisplayList(octree, g_World, octree.getDisplayListID());
    }

    if (fullScreen.isPressed()) {
      setFullScreen(!isFullScreen());
    }

    if (enter.isPressed()) {
      Octree.octreeCollisionDetection = !Octree.octreeCollisionDetection;
    }

    if (left.isPressed()) {
      camera.strafe(-SPEED / 10 * elapsedTime);
    }

    if (right.isPressed()) {

      camera.strafe(SPEED / 10 * elapsedTime);
    }

    if (zoomIn.isPressed()) {
      camera.move(+SPEED / 10 * elapsedTime);
    }
    if (zoomOut.isPressed()) {

      camera.move(-SPEED / 10 * elapsedTime);
    }

    if (moveLeft.isPressed()) {
      g_BallEntity.fAngle += (float) AR_DegToRad(g_BallEntity.fTurnRate) * elapsedTime;
    }

    if (moveRight.isPressed()) {

      // Rotate the Ball Angle Counter Clockwise.
      g_BallEntity.fAngle -= (float) AR_DegToRad(g_BallEntity.fTurnRate) * elapsedTime;
    }

    // Clamp values above 2 * PI or 360 Deg's.
    if (g_BallEntity.fAngle >= AR_2PI) g_BallEntity.fAngle = g_BallEntity.fAngle - AR_2PI;

    // Clamp values below 0.
    if (g_BallEntity.fAngle < 0.0f) g_BallEntity.fAngle = AR_2PI + g_BallEntity.fAngle;

    if (debug.isPressed()) {
      g_bDisplayNodes = !g_bDisplayNodes;
    }

    if (moveUp.isPressed()) {
      if (g_BallEntity.fVelX + (g_BallEntity.fAccel * elapsedTime) < g_BallEntity.fMaxVel) {
        g_BallEntity.fVelX += g_BallEntity.fAccel * elapsedTime;
        g_BallEntity.fVelZ += g_BallEntity.fAccel * elapsedTime;
      }
    }
    if (moveDown.isPressed()) {

      // Move the Ball Backwards.
      if (g_BallEntity.fVelX - (g_BallEntity.fAccel * elapsedTime) > g_BallEntity.fMinVel) {
        g_BallEntity.fVelX -= g_BallEntity.fAccel * elapsedTime;
        g_BallEntity.fVelZ -= g_BallEntity.fAccel * elapsedTime;
      }
    }

    // Apply Gravity to this Entity (using time based motion) if he's not colliding with anything.
    if (!octree.isObjectColliding()) g_BallEntity.fVelY += (GRAVITY * elapsedTime);

    // Apply (spherical based) motion.

    g_BallEntity.x +=
        (g_fSinTable[(int) AR_RadToDeg(g_BallEntity.fAngle)] * g_BallEntity.fVelX) * elapsedTime;
    g_BallEntity.y += g_BallEntity.fVelY * elapsedTime;
    g_BallEntity.z +=
        (g_fCosTable[(int) AR_RadToDeg(g_BallEntity.fAngle)] * g_BallEntity.fVelZ) * elapsedTime;

    // Adjust the Forward I-Sectors Endpoint.
    g_vForwardISector[1].x =
        g_fSinTable[(int) AR_RadToDeg(g_BallEntity.fAngle)] * g_BallEntity.fRadius * 0.2f;
    g_vForwardISector[1].y = 0.0f;
    g_vForwardISector[1].z =
        g_fCosTable[(int) AR_RadToDeg(g_BallEntity.fAngle)] * g_BallEntity.fRadius * 0.2f;

    // Slow this guy down (friction).
    if (g_BallEntity.fVelX > g_fFriction * elapsedTime) {
      g_BallEntity.fVelX -= g_fFriction * elapsedTime;
    }

    if (g_BallEntity.fVelZ > g_fFriction * elapsedTime) {
      g_BallEntity.fVelZ -= g_fFriction * elapsedTime;
    }

    if (g_BallEntity.fVelX < g_fFriction * elapsedTime) {
      g_BallEntity.fVelX += g_fFriction * elapsedTime;
    }

    if (g_BallEntity.fVelZ < g_fFriction * elapsedTime) {
      g_BallEntity.fVelZ += g_fFriction * elapsedTime;
    }

    // If this Ball falls outside the world, drop back from the top.
    if (g_BallEntity.y < -30) {
      g_BallEntity.x = g_BallEntity.z = 0.0f;
      g_BallEntity.y = 5.0f;
      g_BallEntity.fVelX = g_BallEntity.fVelY = g_BallEntity.fVelZ = 0.0f;
    }

    Vector3f[] vGroundLine = {new Vector3f(), new Vector3f()};
    Vector3f[] vForwardLine = {new Vector3f(), new Vector3f()};

    // Prepare a Temporary line transformed to the Balls exact world position.
    vGroundLine[0].x = g_BallEntity.x + g_vGroundISector[0].x;
    vGroundLine[0].y = g_BallEntity.y + g_vGroundISector[0].y;
    vGroundLine[0].z = g_BallEntity.z + g_vGroundISector[0].z;

    vGroundLine[1].x = g_BallEntity.x + g_vGroundISector[1].x;
    vGroundLine[1].y = g_BallEntity.y + g_vGroundISector[1].y;
    vGroundLine[1].z = g_BallEntity.z + g_vGroundISector[1].z;

    // Prepare a Temporary line transformed to the Balls exact world position.
    vForwardLine[0].x = g_BallEntity.x + g_vForwardISector[0].x;
    vForwardLine[0].y = g_BallEntity.y + g_vForwardISector[0].y;
    vForwardLine[0].z = g_BallEntity.z + g_vForwardISector[0].z;

    vForwardLine[1].x = g_BallEntity.x + g_vForwardISector[1].x;
    vForwardLine[1].y = g_BallEntity.y + g_vForwardISector[1].y;
    vForwardLine[1].z = g_BallEntity.z + g_vForwardISector[1].z;

    // A temporary Vector holding the Intersection Point of our Intersection Check.
    vIntersectionPt = new Vector3f();

    // Reset the Status of the Object (wheter it is colliding or not).
    octree.setObjectColliding(false);

    // Reset the Nodes collided to zero so we can start with a fresh count.
    Octree.numNodesCollided = 0;

    // Test the line for an intersection with the Octree Geometry.
    if (octree.intersectLineWithOctree(octree, g_World, vGroundLine, vIntersectionPt)) {
      // Move the Ball up from the point at which it collided with the ground. This is what
      // ground clamping is!
      g_BallEntity.x = vIntersectionPt.x;
      // NOTE: Make sure it is above the surface, AND half it's height (so it isn't half
      // underground).
      // This would only apply if you placed entity's by their exact center.
      g_BallEntity.y = vIntersectionPt.y + g_BallEntity.fRadius;
      g_BallEntity.z = vIntersectionPt.z;

      // Stop your up-down velocity.
      g_BallEntity.fVelY = 0.0f;
    }

    // Test the line for an intersection with the Octree Geometry.
    if (octree.intersectLineWithOctree(octree, g_World, vForwardLine, vIntersectionPt)) {
      // Move the Ball up from the point at which it collided with the ground. This is what
      // ground clamping is!
      g_BallEntity.x = vIntersectionPt.x;
      // NOTE: Make sure it is above the surface, AND half it's height (so it isn't half
      // underground).
      // This would only apply if you placed entity's by their exact center.
      g_BallEntity.y = vIntersectionPt.y + g_BallEntity.fRadius;
      g_BallEntity.z = vIntersectionPt.z;

      // Stop your up-down velocity.
      g_BallEntity.fVelY = 0.0f;
    }
  }
Example #2
0
  @Override
  public void init() throws IOException {

    super.init();
    camera = new Camera(true);
    camera.setPosition(-17f, 20f, 17f, 0, 0, 0, 0, 1, 0);
    float df = 100.0f;

    // Precalculate the Sine and Cosine Lookup Tables.
    // Basically, loop through 360 Degrees and assign the Radian
    // value to each array index (which represents the Degree).
    for (int i = 0; i < 360; i++) {
      g_fSinTable[i] = (float) Math.sin(AR_DegToRad(i));
      g_fCosTable[i] = (float) Math.cos(AR_DegToRad(i));
    }

    pObj = new Sphere();
    pObj.setOrientation(GLU_OUTSIDE);

    Octree.debug = new BoundingBox();
    // Turn lighting on initially
    Octree.turnLighting = true;

    // The current amount of end nodes in our tree (The nodes with vertices stored in them)
    Octree.totalNodesCount = 0;

    // This stores the amount of nodes that are in the frustum
    Octree.totalNodesDrawn = 0;

    // The maximum amount of triangles per node.  If a node has equal or less
    // than this, stop subdividing and store the face indices in that node
    Octree.maxTriangles = 800;

    // The maximum amount of subdivisions allowed (Levels of subdivision)
    Octree.maxSubdivisions = 5;

    // The number of Nodes we've checked for collision.
    Octree.numNodesCollided = 0;

    // Wheter the Object is Colliding with anything in the World or not.
    octree.setObjectColliding(false);

    // Wheter we test the whole world for collision or just the nodes we are in.
    Octree.octreeCollisionDetection = true;

    LoadWorld();

    // for(int i=0; i < g_World.getNumOfMaterials(); i++)
    // {
    //	System.out.println(g_World.getMaterials(i).getName() + " indice " + i);

    // }

    // for(int i=0; i < g_World.getNumOfObjects(); i++)
    // {
    //	System.out.println(g_World.getObject(i).getName());
    //	System.out.println(g_World.getObject(i).getMaterialID());
    // System.out.println(g_World.getPObject(i).getMaterialID());
    // }

    // System.out.println(g_World.getPMaterials(12).getColor()[0] + " " +
    // g_World.getPMaterials(12).getColor()[1]
    //                    + " " + g_World.getPMaterials(12).getColor()[2]);
    // System.out.println(g_World.getPMaterials(g_World.getPObject(6).getMaterialID()));

    inputManager = new InputManager();

    createGameActions();

    posLuz1F = Conversion.allocFloats(posLuz1);

    // Define a cor de fundo da janela de visualização como preto
    glClearColor(0, 0, 0, 1);

    // Ajusta iluminação
    glLight(GL_LIGHT0, GL_AMBIENT, Conversion.allocFloats(luzAmb1));
    glLight(GL_LIGHT0, GL_DIFFUSE, Conversion.allocFloats(luzDif1));
    glLight(GL_LIGHT0, GL_SPECULAR, Conversion.allocFloats(luzEsp1));

    // Habilita todas as fontes de luz
    glEnable(GL_LIGHT0);

    glEnable(GL_LIGHTING);
    // Agora posiciona demais fontes de luz
    glLight(GL_LIGHT0, GL_POSITION, posLuz1F);

    // Habilita Z-Buffer
    glEnable(GL_DEPTH_TEST);

    // Seleciona o modo de GL_COLOR_MATERIAL
    // glColorMaterial(GL_FRONT, GL_DIFFUSE);
    glEnable(GL_COLOR_MATERIAL);
    glMaterial(GL_FRONT, GL_SPECULAR, Conversion.allocFloats(spec));
    glMaterialf(GL_FRONT, GL_SHININESS, df);
  }