Example #1
0
 /** Adds the input vector into the current parameters. */
 public void updateParams(HashVector p) {
   p.addTimesInto(1, theta);
 }
Example #2
0
  public void stocGradTrain(Parser parser, boolean testEachRound) {

    int numUpdates = 0;

    List<LexEntry> fixedEntries = new LinkedList<LexEntry>();
    fixedEntries.addAll(parser.returnLex().getLexicon());

    // add all sentential lexical entries.
    for (int l = 0; l < trainData.size(); l++) {
      parser.addLexEntries(trainData.getDataSet(l).makeSentEntries());
    }
    parser.setGlobals();

    DataSet data = null;
    // for each pass over the data
    for (int j = 0; j < EPOCHS; j++) {
      System.out.println("Training, iteration " + j);
      int total = 0, correct = 0, wrong = 0, looCorrect = 0, looWrong = 0;
      for (int l = 0; l < trainData.size(); l++) {

        // the variables to hold the current training example
        String words = null;
        Exp sem = null;

        data = trainData.getDataSet(l);
        if (verbose) System.out.println("---------------------");
        String filename = trainData.getFilename(l);
        if (verbose) System.out.println("DataSet: " + filename);
        if (verbose) System.out.println("---------------------");

        // loop through the training examples
        // try to create lexical entries for each training example
        for (int i = 0; i < data.size(); i++) {
          // print running stats
          if (verbose) {
            if (total != 0) {
              double r = (double) correct / total;
              double p = (double) correct / (correct + wrong);
              System.out.print(i + ": =========== r:" + r + " p:" + p);
              System.out.println(" (epoch:" + j + " file:" + l + " " + filename + ")");
            } else System.out.println(i + ": ===========");
          }

          // get the training example
          words = data.sent(i);
          sem = data.sem(i);
          if (verbose) {
            System.out.println(words);
            System.out.println(sem);
          }

          List<String> tokens = Parser.tokenize(words);

          if (tokens.size() > maxSentLen) continue;
          total++;

          String mes = null;
          boolean hasCorrect = false;

          // first, get all possible lexical entries from
          // a manipulation of the best parse.
          List<LexEntry> lex = makeLexEntriesChart(words, sem, parser);

          if (verbose) {
            System.out.println("Adding:");
            for (LexEntry le : lex) {
              System.out.println(le + " : " + LexiconFeatSet.initialWeight(le));
            }
          }

          parser.addLexEntries(lex);

          if (verbose) System.out.println("Lex Size: " + parser.returnLex().size());

          // first parse to see if we are currently correct
          if (verbose) mes = "First";
          parser.parseTimed(words, null, mes);

          Chart firstChart = parser.getChart();
          Exp best = parser.bestSem();

          // this just collates and outputs the training
          // accuracy.
          if (sem.equals(best)) {
            // System.out.println(parser.bestParses().get(0));
            if (verbose) {
              System.out.println("CORRECT:" + best);
              lex = parser.getMaxLexEntriesFor(sem);
              System.out.println("Using:");
              printLex(lex);
              if (lex.size() == 0) {
                System.out.println("ERROR: empty lex");
              }
            }
            correct++;
          } else {
            if (verbose) {
              System.out.println("WRONG: " + best);
              lex = parser.getMaxLexEntriesFor(best);
              System.out.println("Using:");
              printLex(lex);
              if (best != null && lex.size() == 0) {
                System.out.println("ERROR: empty lex");
              }
            }
            wrong++;
          }

          // compute first half of parameter update:
          // subtract the expectation of parameters
          // under the distribution that is conditioned
          // on the sentence alone.
          double norm = firstChart.computeNorm();
          HashVector update = new HashVector();
          HashVector firstfeats = null, secondfeats = null;
          if (norm != 0.0) {
            firstfeats = firstChart.computeExpFeatVals();
            firstfeats.divideBy(norm);
            firstfeats.dropSmallEntries();
            firstfeats.addTimesInto(-1.0, update);
          } else continue;
          firstChart = null;

          if (verbose) mes = "Second";
          parser.parseTimed(words, sem, mes);
          hasCorrect = parser.hasParseFor(sem);

          // compute second half of parameter update:
          // add the expectation of parameters
          // under the distribution that is conditioned
          // on the sentence and correct logical form.
          if (!hasCorrect) continue;
          Chart secondChart = parser.getChart();
          double secnorm = secondChart.computeNorm(sem);
          if (norm != 0.0) {
            secondfeats = secondChart.computeExpFeatVals(sem);
            secondfeats.divideBy(secnorm);
            secondfeats.dropSmallEntries();
            secondfeats.addTimesInto(1.0, update);
            lex = parser.getMaxLexEntriesFor(sem);
            data.setBestLex(i, lex);
            if (verbose) {
              System.out.println("Best LexEntries:");
              printLex(lex);
              if (lex.size() == 0) {
                System.out.println("ERROR: empty lex");
              }
            }
          } else continue;

          // now do the update
          double scale = alpha_0 / (1.0 + c * numUpdates);
          if (verbose) System.out.println("Scale: " + scale);
          update.multiplyBy(scale);
          update.dropSmallEntries();

          numUpdates++;
          if (verbose) {
            System.out.println("Update:");
            System.out.println(update);
          }
          if (!update.isBad()) {
            if (!update.valuesInRange(-100, 100)) {
              System.out.println("WARNING: large update");
              System.out.println("first feats: " + firstfeats);
              System.out.println("second feats: " + secondfeats);
            }
            parser.updateParams(update);
          } else {
            System.out.println(
                "ERROR: Bad Update: " + update + " -- norm: " + norm + " -- feats: ");
            parser.getParams().printValues(update);
            System.out.println();
          }
        } // end for each training example
      } // end for each data set

      double r = (double) correct / total;

      // we can prune the lexical items that were not used
      // in a max scoring parse.
      if (pruneLex) {
        Lexicon cur = new Lexicon();
        cur.addLexEntries(fixedEntries);
        cur.addLexEntries(data.getBestLex());
        parser.setLexicon(cur);
      }

      if (testEachRound) {
        System.out.println("Testing");
        test(parser, false);
      }
    } // end epochs loop
  }