/** Performs actual projection using specified method. */ public void doProjection() { if (imp == null) return; sliceCount = 0; if (method < AVG_METHOD || method > MEDIAN_METHOD) method = AVG_METHOD; for (int slice = startSlice; slice <= stopSlice; slice += increment) sliceCount++; if (method == MEDIAN_METHOD) { projImage = doMedianProjection(); return; } // Create new float processor for projected pixels. FloatProcessor fp = new FloatProcessor(imp.getWidth(), imp.getHeight()); ImageStack stack = imp.getStack(); RayFunction rayFunc = getRayFunction(method, fp); if (IJ.debugMode == true) { IJ.log("\nProjecting stack from: " + startSlice + " to: " + stopSlice); } // Determine type of input image. Explicit determination of // processor type is required for subsequent pixel // manipulation. This approach is more efficient than the // more general use of ImageProcessor's getPixelValue and // putPixel methods. int ptype; if (stack.getProcessor(1) instanceof ByteProcessor) ptype = BYTE_TYPE; else if (stack.getProcessor(1) instanceof ShortProcessor) ptype = SHORT_TYPE; else if (stack.getProcessor(1) instanceof FloatProcessor) ptype = FLOAT_TYPE; else { IJ.error("Z Project", "Non-RGB stack required"); return; } // Do the projection. for (int n = startSlice; n <= stopSlice; n += increment) { IJ.showStatus("ZProjection " + color + ": " + n + "/" + stopSlice); IJ.showProgress(n - startSlice, stopSlice - startSlice); projectSlice(stack.getPixels(n), rayFunc, ptype); } // Finish up projection. if (method == SUM_METHOD) { fp.resetMinAndMax(); projImage = new ImagePlus(makeTitle(), fp); } else if (method == SD_METHOD) { rayFunc.postProcess(); fp.resetMinAndMax(); projImage = new ImagePlus(makeTitle(), fp); } else { rayFunc.postProcess(); projImage = makeOutputImage(imp, fp, ptype); } if (projImage == null) IJ.error("Z Project", "Error computing projection."); }
public StandardDeviation(FloatProcessor fp, int num) { result = (float[]) fp.getPixels(); len = result.length; this.num = num; sum = new double[len]; sum2 = new double[len]; }
/** Generate output image whose type is same as input image. */ private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) { int width = imp.getWidth(); int height = imp.getHeight(); float[] pixels = (float[]) fp.getPixels(); ImageProcessor oip = null; // Create output image consistent w/ type of input image. int size = pixels.length; switch (ptype) { case BYTE_TYPE: oip = imp.getProcessor().createProcessor(width, height); byte[] pixels8 = (byte[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels8[i] = (byte) pixels[i]; break; case SHORT_TYPE: oip = imp.getProcessor().createProcessor(width, height); short[] pixels16 = (short[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels16[i] = (short) pixels[i]; break; case FLOAT_TYPE: oip = new FloatProcessor(width, height, pixels, null); break; } // Adjust for display. // Calling this on non-ByteProcessors ensures image // processor is set up to correctly display image. oip.resetMinAndMax(); // Create new image plus object. Don't use // ImagePlus.createImagePlus here because there may be // attributes of input image that are not appropriate for // projection. return new ImagePlus(makeTitle(), oip); }
/** Simple constructor since no preprocessing is necessary. */ public MinIntensity(FloatProcessor fp) { fpixels = (float[]) fp.getPixels(); len = fpixels.length; for (int i = 0; i < len; i++) fpixels[i] = Float.MAX_VALUE; }
/** * Constructor requires number of slices to be projected. This is used to determine average at * each pixel. */ public AverageIntensity(FloatProcessor fp, int num) { fpixels = (float[]) fp.getPixels(); len = fpixels.length; this.num = num; }