private void geterrors() { GenericDialog gd = new GenericDialog("Options"); float conf = 0.67f; gd.addNumericField("Confidence Limit", (int) (conf * 100.0f), 5, 10, null); gd.addChoice("Error Parameter", paramsnames, paramsnames[0]); double spacing = 0.01; gd.addNumericField("Chi^2 plot spacing (% of value)?", spacing * 100.0, 2, 10, null); boolean globalerror = false; gd.addCheckbox("Global Fit Error?", globalerror); int dataset = 0; gd.addNumericField("Data Set (for Global Error)", dataset, 0); gd.showDialog(); if (gd.wasCanceled()) { return; } conf = 0.01f * (float) gd.getNextNumber(); int paramindex = (int) gd.getNextChoiceIndex(); spacing = 0.01 * gd.getNextNumber(); globalerror = gd.getNextBoolean(); dataset = (int) gd.getNextNumber(); if (globalerror) { support_plane_errors erclass = new support_plane_errors(this, 0.0001, 50, true, 0.1); int[] erindeces = {paramindex, dataset}; // need to set up all the matrices int nsel = 0; int nparams = 11; for (int i = 0; i < ncurves; i++) { if (include[i]) { nsel++; } } double[][] params = new double[nsel][nparams]; String[][] tempformulas = new String[nsel][nparams]; double[][][] constraints = new double[2][nsel][nparams]; int[][] vflmatrix = new int[nsel][nparams]; float[][] tempdata = new float[nsel][xpts * ypts]; float[][] tempweights = new float[nsel][xpts * ypts]; int nfit = 0; int counter = 0; for (int i = 0; i < ncurves; i++) { if (include[i]) { for (int j = 0; j < nparams; j++) { params[counter][j] = globalparams[i][j]; tempformulas[counter][j] = globalformulas[i][j]; constraints[0][counter][j] = globalconstraints[0][i][j]; constraints[1][counter][j] = globalconstraints[1][i][j]; vflmatrix[counter][j] = globalvflmatrix[i][j]; if (vflmatrix[counter][j] == 0 || (j == 0 && vflmatrix[counter][j] == 2)) { nfit++; } } for (int j = 0; j < xpts; j++) { for (int k = 0; k < ypts; k++) { tempdata[counter][j + k * xpts] = (float) ((double) pch[i][j][k] / (double) nmeas[i]); tempweights[counter][j + k * xpts] = weights[i][j][k]; } } counter++; } } int dofnum = xpts * ypts * nsel - (nfit - 1) - 1; int dofden = xpts * ypts * nsel - nfit - 1; // double flim=FLimit(dofnum,dofden,(double)conf); double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return; } double truespacing = Math.abs(params[erindeces[1]][erindeces[0]] * spacing); double[][] c2plot = erclass.geterrorsglobal( params, vflmatrix, tempformulas, paramsnames, constraints, tempdata, tempweights, flim, truespacing, erindeces); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4( "c2 plot", paramsnames[paramindex] + "[" + dataset + "]", "Chi^2", c2plotf[0], c2plotf[1]) .draw(); } else { support_plane_errors erclass = new support_plane_errors(this, 0.0001, 50, false, 0.1); int errindex = paramindex; float[] tempdata = new float[xpts * ypts]; float[] tempweights = new float[xpts * ypts]; for (int i = 0; i < xpts; i++) { for (int j = 0; j < ypts; j++) { tempdata[i + j * xpts] = (float) ((double) avg[i][j] / (double) nmeas[ncurves]); tempweights[i + j * xpts] = avgweights[i][j]; } } int nfit = 0; for (int i = 0; i < 7; i++) { if (avgfixes[i] == 0) { nfit++; } } int dofnum = xpts * ypts - (nfit - 1) - 1; int dofden = xpts * ypts - nfit - 1; double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return; } double truespacing = Math.abs(avgparams[errindex] * spacing); double[][] c2plot = erclass.geterrors( avgparams, avgfixes, avgconstraints, tempdata, tempweights, flim, truespacing, errindex); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4("c2 plot", paramsnames[errindex], "Chi^2", c2plotf[0], c2plotf[1]).draw(); } }
public void run(String arg) { GenericDialog gd = new GenericDialog("Options"); double sfreq = 20000.0; gd.addNumericField("Sampling Frequency?", sfreq, 1, 10, null); String[] psfchoice = {"3D Gaussian", "Gaus-Lorentz^2", "2D Gaussian"}; gd.addChoice("PSF Type?", psfchoice, psfchoice[0]); String[] filetypechoice = { "Confocor 3 raw", "Short binary trajectory", "PlotWindow trajectory", "Ascii Text File" }; gd.addChoice("File Type?", filetypechoice, filetypechoice[0]); boolean ch2green = true; gd.addCheckbox("Ch2 is green?", ch2green); gd.showDialog(); if (gd.wasCanceled()) { return; } sfreq = gd.getNextNumber(); int psfflag = gd.getNextChoiceIndex(); int fileflag = gd.getNextChoiceIndex(); ch2green = gd.getNextBoolean(); int nfiles = 0; Object[] histograms = null; int xmax = 0; int ymax = 0; String[] names = null; if (fileflag < 2) { jdataio ioclass = new jdataio(); File[] filearray = ioclass.openfiles(OpenDialog.getDefaultDirectory(), IJ.getInstance()); if (filearray.length == 0) { return; } String dir = filearray[0].getAbsolutePath(); int sepindex = dir.lastIndexOf(File.separator); String newdir = dir.substring(0, sepindex + 1); OpenDialog.setDefaultDirectory(newdir); nfiles = filearray.length / 2; if (nfiles > 25) { nfiles = 25; } histograms = new Object[nfiles]; names = organize_c3_files(filearray); for (int i = 0; i < nfiles; i++) { try { int length1 = (int) (((double) filearray[2 * i].length() - 128.0) / 4.0); int length2 = (int) (((double) filearray[2 * i + 1].length() - 128.0) / 4.0); int length3 = (int) (((double) filearray[2 * i].length()) / 2.0); int length4 = (int) (((double) filearray[2 * i + 1].length()) / 2.0); InputStream instream = new BufferedInputStream(new FileInputStream(filearray[2 * i])); InputStream instream2 = new BufferedInputStream(new FileInputStream(filearray[2 * i + 1])); if (fileflag == 0) { int[] pmdata = new int[length1]; int[] pmdata2 = new int[length2]; if (!ioclass.skipstreambytes(instream, 128)) { showioerror(); instream.close(); return; } if (!ioclass.skipstreambytes(instream2, 128)) { showioerror(); instream2.close(); return; } if (!ioclass.readintelintfile(instream, length1, pmdata)) { showioerror(); instream.close(); return; } if (!ioclass.readintelintfile(instream2, length2, pmdata2)) { showioerror(); instream2.close(); return; } if (ch2green) { histograms[i] = (new pmodeconvert()).pm2pch(pmdata2, pmdata, sfreq, 20000000); } else { histograms[i] = (new pmodeconvert()).pm2pch(pmdata, pmdata2, sfreq, 20000000); } } else { float[] tmdata = new float[length3]; float[] tmdata2 = new float[length4]; if (!ioclass.readintelshortfile(instream, length3, tmdata)) { showioerror(); instream.close(); return; } if (!ioclass.readintelshortfile(instream2, length4, tmdata2)) { showioerror(); instream2.close(); return; } if (ch2green) { histograms[i] = (new pmodeconvert()).create_2Dhistogram(tmdata2, tmdata); } else { histograms[i] = (new pmodeconvert()).create_2Dhistogram(tmdata, tmdata2); } } if (((float[][]) histograms[i]).length > xmax) { xmax = ((float[][]) histograms[i]).length; } if (((float[][]) histograms[i])[0].length > ymax) { ymax = ((float[][]) histograms[i])[0].length; } instream.close(); instream2.close(); } catch (IOException e) { showioerror(); return; } } } else { if (fileflag == 2) { ImageWindow iw = WindowManager.getCurrentWindow(); float[][] trajectories = (float[][]) jutils.runPW4VoidMethod(iw, "getYValues"); float[][] tempxvals = (float[][]) jutils.runPW4VoidMethod(iw, "getXValues"); sfreq = 1.0 / ((double) tempxvals[0][1]); nfiles = trajectories.length / 2; if (nfiles > 25) { nfiles = 25; } names = new String[nfiles + 1]; names[nfiles] = "avg"; histograms = new Object[nfiles]; for (int i = 0; i < nfiles; i++) { names[i] = "trajectory " + (i + 1); if (ch2green) { histograms[i] = (new pmodeconvert()) .create_2Dhistogram(trajectories[2 * i + 1], trajectories[2 * i]); } else { histograms[i] = (new pmodeconvert()) .create_2Dhistogram(trajectories[2 * i], trajectories[2 * i + 1]); } if (((float[][]) histograms[i]).length > xmax) { xmax = ((float[][]) histograms[i]).length; } if (((float[][]) histograms[i])[0].length > ymax) { ymax = ((float[][]) histograms[i])[0].length; } } } else { // here we read tab delimited lines from files jdataio ioclass = new jdataio(); File[] filearray = ioclass.openfiles(OpenDialog.getDefaultDirectory(), IJ.getInstance()); if (filearray.length == 0) { return; } String dir = filearray[0].getAbsolutePath(); int sepindex = dir.lastIndexOf(File.separator); String newdir = dir.substring(0, sepindex + 1); OpenDialog.setDefaultDirectory(newdir); nfiles = filearray.length; if (nfiles > 25) { nfiles = 25; } histograms = new Object[nfiles]; names = new String[nfiles + 1]; names[nfiles] = "avg"; for (int i = 0; i < nfiles; i++) { try { names[i] = filearray[i].getName(); BufferedReader d = new BufferedReader(new FileReader(filearray[i])); String[] lines = new String[256]; int counter = 0; do { lines[counter] = d.readLine(); counter++; } while ((lines[counter - 1] != null && lines[counter - 1] != "") && counter < 256); int numcolumns = 0; for (int j = 0; j < counter - 1; j++) { int temp = getncolumns(lines[j]); if (temp > numcolumns) { numcolumns = temp; } } float[][] temphist2 = null; if (ch2green) { temphist2 = new float[numcolumns][counter - 1]; } else { temphist2 = new float[counter - 1][numcolumns]; } for (int k = 0; k < counter - 1; k++) { float[] temp = tab_delim2float(lines[k]); for (int j = 0; j < numcolumns; j++) { if (ch2green) { temphist2[j][k] = temp[j]; } else { temphist2[k][j] = temp[j]; } } } histograms[i] = temphist2; d.close(); } catch (IOException e) { showioerror(); return; } } for (int i = 0; i < nfiles; i++) { if (((float[][]) histograms[i]).length > xmax) { xmax = ((float[][]) histograms[i]).length; } if (((float[][]) histograms[i])[0].length > ymax) { ymax = ((float[][]) histograms[i])[0].length; } } } } // note that here x is green and y is red float[][][] pch = new float[nfiles][xmax][ymax]; for (int i = 0; i < nfiles; i++) { for (int j = 0; j < ((float[][]) histograms[i]).length; j++) { for (int k = 0; k < ((float[][]) histograms[i])[j].length; k++) { pch[i][j][k] = ((float[][]) histograms[i])[j][k]; } } } final PCH2DFitWindow cw = new PCH2DFitWindow(); cw.init(names, pch, psfflag); final Frame f = new Frame("PCH 2D Analysis"); f.setLocation(10, 10); f.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { f.dispose(); } }); f.add(cw); f.pack(); f.setResizable(false); Insets ins = f.getInsets(); cw.totalSize.height = PCH2DFitWindow.H + ins.bottom + ins.top + 65; cw.totalSize.width = PCH2DFitWindow.WR + ins.left + ins.right; f.setSize(cw.totalSize); f.setVisible(true); cw.requestFocus(); }
public boolean get_errors(double[] params, int[] fixes) { GenericDialog gd = new GenericDialog("Error Options"); String[] methods = {"Support Plane", "Monte Carlo"}; gd.addChoice("Method", methods, methods[0]); float conf = 0.67f; gd.addNumericField("SP_Confidence Limit (%)", (int) (conf * 100.0f), 5, 10, null); String[] labels = {"P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10"}; gd.addChoice("SP_Parameter", labels, labels[0]); double spacing = 0.01; gd.addNumericField("SP_Chi^2_plot_spacing (% of value)?", spacing * 100.0, 2, 10, null); int ntrials = 100; gd.addNumericField("MC_#_Trials", ntrials, 0); gd.showDialog(); if (gd.wasCanceled()) { return false; } int methodindex = gd.getNextChoiceIndex(); conf = 0.01f * (float) gd.getNextNumber(); int paramindex = gd.getNextChoiceIndex(); spacing = 0.01 * gd.getNextNumber(); ntrials = (int) gd.getNextNumber(); if (methodindex == 0) { support_plane_errors_v2 erclass = new support_plane_errors_v2(this, 0.0001, 50, false, 0.1); int errindex = paramindex; int nfit = 0; for (int i = 0; i < labels.length; i++) { if (fixes[i] == 0) { nfit++; } } int npts = tempdata.length; int dofnum = npts - (nfit - 1) - 1; int dofden = npts - nfit - 1; double flim = (new jdist()).FLimit(dofnum, dofden, (double) conf); IJ.log("FLimit = " + (float) flim); if (flim == Double.NaN && flim < 1.0) { IJ.showMessage("Invalid Limiting F Value"); return false; } double truespacing = Math.abs(params[errindex] * spacing); double[][] c2plot = erclass.geterrors( params, fixes, constraints, tempdata, weights, flim, truespacing, errindex); IJ.log("upper limit = " + c2plot[1][0] + " lower limit = " + c2plot[0][0]); IJ.log( "upper error = " + (c2plot[1][0] - params[errindex]) + " lower error = " + (params[errindex] - c2plot[0][0])); int templength = c2plot[0].length; float[][] c2plotf = new float[2][templength - 1]; for (int i = 0; i < (templength - 1); i++) { c2plotf[0][i] = (float) c2plot[0][i + 1]; c2plotf[1][i] = (float) c2plot[1][i + 1]; } new PlotWindow4("c2 plot", labels[errindex], "Chi^2", c2plotf[0], c2plotf[1]).draw(); } else { StringBuffer sb = new StringBuffer(); sb.append("Trial\t"); for (int i = 0; i < labels.length; i++) { if (fixes[i] == 0) sb.append(labels[i] + "\t"); } sb.append("chi^2"); tw = new TextWindow("Monte Carlo Results", sb.toString(), "", 400, 400); redirect = true; monte_carlo_errors_v2 erclass = new monte_carlo_errors_v2(this, 0.0001, 50, false, 0.1); double[][] errors = erclass.geterrors(params, fixes, constraints, tempdata, weights, ntrials); sb = new StringBuffer(); sb.append("StDev\t"); for (int i = 0; i < errors.length; i++) { float[] ferr = new float[errors[0].length]; for (int j = 0; j < ferr.length; j++) ferr[j] = (float) errors[i][j]; float stdev = jstatistics.getstatistic("StDev", ferr, null); sb.append("" + stdev); if (i < (errors.length - 1)) sb.append("\t"); } tw.append(sb.toString()); redirect = false; } return true; }