@Override public void map(Chunk[] chks) { _gss = new double[_nclass][]; _rss = new double[_nclass][]; // For all tree/klasses for (int k = 0; k < _nclass; k++) { final DTree tree = _trees[k]; final int leaf = _leafs[k]; if (tree == null) continue; // Empty class is ignored // A leaf-biased array of all active Tree leaves. final double gs[] = _gss[k] = new double[tree._len - leaf]; final double rs[] = _rss[k] = new double[tree._len - leaf]; final Chunk nids = chk_nids(chks, k); // Node-ids for this tree/class final Chunk ress = chk_work(chks, k); // Residuals for this tree/class // If we have all constant responses, then we do not split even the // root and the residuals should be zero. if (tree.root() instanceof LeafNode) continue; for (int row = 0; row < nids._len; row++) { // For all rows int nid = (int) nids.at80(row); // Get Node to decide from if (nid < 0) continue; // Missing response if (tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree nid = tree.node(nid)._pid; // Then take parent's decision DecidedNode dn = tree.decided(nid); // Must have a decision point if (dn._split._col == -1) // Unable to decide? dn = tree.decided(nid = dn._pid); // Then take parent's decision int leafnid = dn.ns(chks, row); // Decide down to a leafnode assert leaf <= leafnid && leafnid < tree._len; assert tree.node(leafnid) instanceof LeafNode; // Note: I can which leaf/region I end up in, but I do not care for // the prediction presented by the tree. For GBM, we compute the // sum-of-residuals (and sum/abs/mult residuals) for all rows in the // leaf, and get our prediction from that. nids.set0(row, leafnid); assert !ress.isNA0(row); double res = ress.at0(row); double ares = Math.abs(res); gs[leafnid - leaf] += _nclass > 1 ? ares * (1 - ares) : 1; rs[leafnid - leaf] += res; } } }
@Override public void map(Chunk[] chks) { final Chunk y = importance ? chk_resp(chks) : null; // Response final float[] rpred = importance ? new float[1 + _nclass] : null; // Row prediction final double[] rowdata = importance ? new double[_ncols] : null; // Pre-allocated row data final Chunk oobt = chk_oobt(chks); // Out-of-bag rows counter over all trees // Iterate over all rows for (int row = 0; row < oobt._len; row++) { boolean wasOOBRow = false; // For all tree (i.e., k-classes) for (int k = 0; k < _nclass; k++) { final DTree tree = _trees[k]; if (tree == null) continue; // Empty class is ignored // If we have all constant responses, then we do not split even the // root and the residuals should be zero. if (tree.root() instanceof LeafNode) continue; final Chunk nids = chk_nids(chks, k); // Node-ids for this tree/class final Chunk ct = chk_tree(chks, k); // k-tree working column holding votes for given row int nid = (int) nids.at80(row); // Get Node to decide from // Update only out-of-bag rows // This is out-of-bag row - but we would like to track on-the-fly prediction for the row if (isOOBRow(nid)) { // The row should be OOB for all k-trees !!! assert k == 0 || wasOOBRow : "Something is wrong: k-class trees oob row computing is broken! All k-trees should agree on oob row!"; wasOOBRow = true; nid = oob2Nid(nid); if (tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree nid = tree.node(nid).pid(); // Then take parent's decision DecidedNode dn = tree.decided(nid); // Must have a decision point if (dn._split.col() == -1) // Unable to decide? dn = tree.decided(tree.node(nid).pid()); // Then take parent's decision int leafnid = dn.ns(chks, row); // Decide down to a leafnode // Setup Tree(i) - on the fly prediction of i-tree for row-th row // - for classification: cumulative number of votes for this row // - for regression: cumulative sum of prediction of each tree - has to be normalized // by number of trees double prediction = ((LeafNode) tree.node(leafnid)).pred(); // Prediction for this k-class and this row if (importance) rpred[1 + k] = (float) prediction; // for both regression and classification ct.set0(row, (float) (ct.at0(row) + prediction)); // For this tree this row is out-of-bag - i.e., a tree voted for this row oobt.set0( row, _nclass > 1 ? 1 : oobt.at0(row) + 1); // for regression track number of trees, for classification boolean // flag is enough } // reset help column for this row and this k-class nids.set0(row, 0); } /* end of k-trees iteration */ if (importance) { if (wasOOBRow && !y.isNA0(row)) { if (classification) { int treePred = ModelUtils.getPrediction(rpred, data_row(chks, row, rowdata)); int actuPred = (int) y.at80(row); if (treePred == actuPred) rightVotes++; // No miss ! } else { // regression float treePred = rpred[1]; float actuPred = (float) y.at0(row); sse += (actuPred - treePred) * (actuPred - treePred); } allRows++; } } } }
// -------------------------------------------------------------------------- // Build the next random k-trees represeint tid-th tree private DTree[] buildNextKTrees(Frame fr, int mtrys, float sample_rate, Random rand, int tid) { // We're going to build K (nclass) trees - each focused on correcting // errors for a single class. final DTree[] ktrees = new DTree[_nclass]; // Initial set of histograms. All trees; one leaf per tree (the root // leaf); all columns DHistogram hcs[][][] = new DHistogram[_nclass][1 /*just root leaf*/][_ncols]; // Use for all k-trees the same seed. NOTE: this is only to make a fair // view for all k-trees long rseed = rand.nextLong(); // Initially setup as-if an empty-split had just happened for (int k = 0; k < _nclass; k++) { assert (_distribution != null && classification) || (_distribution == null && !classification); if (_distribution == null || _distribution[k] != 0) { // Ignore missing classes // The Boolean Optimization // This optimization assumes the 2nd tree of a 2-class system is the // inverse of the first. This is false for DRF (and true for GBM) - // DRF picks a random different set of columns for the 2nd tree. // if( k==1 && _nclass==2 ) continue; ktrees[k] = new DRFTree(fr, _ncols, (char) nbins, (char) _nclass, min_rows, mtrys, rseed); boolean isBinom = classification; new DRFUndecidedNode( ktrees[k], -1, DHistogram.initialHist(fr, _ncols, nbins, hcs[k][0], isBinom)); // The "root" node } } // Sample - mark the lines by putting 'OUT_OF_BAG' into nid(<klass>) vector Timer t_1 = new Timer(); Sample ss[] = new Sample[_nclass]; for (int k = 0; k < _nclass; k++) if (ktrees[k] != null) ss[k] = new Sample((DRFTree) ktrees[k], sample_rate) .dfork(0, new Frame(vec_nids(fr, k), vec_resp(fr, k)), build_tree_one_node); for (int k = 0; k < _nclass; k++) if (ss[k] != null) ss[k].getResult(); Log.debug(Sys.DRF__, "Sampling took: + " + t_1); int[] leafs = new int [_nclass]; // Define a "working set" of leaf splits, from leafs[i] to tree._len for each // tree i // ---- // One Big Loop till the ktrees are of proper depth. // Adds a layer to the trees each pass. Timer t_2 = new Timer(); int depth = 0; for (; depth < max_depth; depth++) { if (!Job.isRunning(self())) return null; hcs = buildLayer(fr, ktrees, leafs, hcs, true, build_tree_one_node); // If we did not make any new splits, then the tree is split-to-death if (hcs == null) break; } Log.debug(Sys.DRF__, "Tree build took: " + t_2); // Each tree bottomed-out in a DecidedNode; go 1 more level and insert // LeafNodes to hold predictions. Timer t_3 = new Timer(); for (int k = 0; k < _nclass; k++) { DTree tree = ktrees[k]; if (tree == null) continue; int leaf = leafs[k] = tree.len(); for (int nid = 0; nid < leaf; nid++) { if (tree.node(nid) instanceof DecidedNode) { DecidedNode dn = tree.decided(nid); for (int i = 0; i < dn._nids.length; i++) { int cnid = dn._nids[i]; if (cnid == -1 || // Bottomed out (predictors or responses known constant) tree.node(cnid) instanceof UndecidedNode || // Or chopped off for depth (tree.node(cnid) instanceof DecidedNode && // Or not possible to split ((DecidedNode) tree.node(cnid))._split.col() == -1)) { LeafNode ln = new DRFLeafNode(tree, nid); ln._pred = dn.pred(i); // Set prediction into the leaf dn._nids[i] = ln.nid(); // Mark a leaf here } } // Handle the trivial non-splitting tree if (nid == 0 && dn._split.col() == -1) new DRFLeafNode(tree, -1, 0); } } } // -- k-trees are done Log.debug(Sys.DRF__, "Nodes propagation: " + t_3); // ---- // Move rows into the final leaf rows Timer t_4 = new Timer(); CollectPreds cp = new CollectPreds(ktrees, leafs).doAll(fr, build_tree_one_node); if (importance) { if (classification) asVotes(_treeMeasuresOnOOB) .append(cp.rightVotes, cp.allRows); // Track right votes over OOB rows for this tree else /* regression */ asSSE(_treeMeasuresOnOOB).append(cp.sse, cp.allRows); } Log.debug(Sys.DRF__, "CollectPreds done: " + t_4); // Collect leaves stats for (int i = 0; i < ktrees.length; i++) if (ktrees[i] != null) ktrees[i].leaves = ktrees[i].len() - leafs[i]; // DEBUG: Print the generated K trees // printGenerateTrees(ktrees); return ktrees; }