private void checkExcepction(Collection<Vertex> v, Collection<Edge> e) {
    for (Edge edge : e) {
      // No edge from or to vertex labeled A if there is no vertex with
      // label A
      if (!v.contains(edge.getSource()) || !v.contains(edge.getDestination())) {
        throw new IllegalArgumentException();
      }

      // Edge weights should not be negative
      if (edge.getWeight() < 0) {
        throw new IllegalArgumentException();
      }

      // Collection of edges should not has the same directed edge more
      // than once
      // with a different weight
      for (Edge checkEdges : e) {
        if (checkEdges.getSource().equals(edge.getSource())
            && checkEdges.getDestination().equals(edge.getDestination())
            && checkEdges.getWeight() != edge.getWeight()) {
          throw new IllegalArgumentException();
        }
      }
    }
  }
 /**
  * Test whether vertex b is adjacent to vertex a (i.e. a -> b) in a directed graph. Assumes that
  * we do not have negative cost edges in the graph.
  *
  * @param a one vertex
  * @param b another vertex
  * @return cost of edge if there is a directed edge from a to b in the graph, return -1 otherwise.
  * @throws IllegalArgumentException if a or b do not exist.
  */
 @Override
 public int edgeCost(Vertex a, Vertex b) {
   if (a == null || b == null || !totalVertices.contains(a) || !totalVertices.contains(b)) {
     throw new IllegalArgumentException();
   }
   for (Edge edge : adj.get(a)) {
     if (edge.getDestination().equals(b)) {
       return edge.getWeight();
     }
   }
   return -1;
 }
Example #3
0
  /*
   * Methode to calculate a weight for a way to the start point , it can be
   * one edge or a couple of edges
   */
  private static int calculateWeightOfWay(Vertex firstVertex, Vertex secondVertex) {

    int currentWeight = (Integer) verticesMap.get(firstVertex.getId()).get(1);

    ArrayList<Edge<Vertex>> edgesOfFirstVertex =
        (ArrayList<Edge<Vertex>>) graph.getIncidentEdges(firstVertex.getId());

    for (Edge<Vertex> e : edgesOfFirstVertex) {
      if (e.getVertexB().getId() == secondVertex.getId()) {
        int edgeWeightBetweenFirstandSecond = e.getWeight();
        return edgeWeightBetweenFirstandSecond + currentWeight;
      }
    }
    System.out.println("no edge weight found");
    return 0;
  }
Example #4
0
  /**
   * performs the Dijkstra algorithm
   *
   * @param graph a graph, in which the Dijkstra will be performed
   * @param queue a queue of vertices to help perform Dijkstra
   * @param startVertexID a start vertices id
   * @param destinationVertexID an end vertices id
   */
  private static void performeDijkstra(
      Graph<Vertex, Edge<Vertex>> graph,
      ArrayList<Vertex> queue,
      int startVertexID,
      int destinationVertexID) {

    while (queue.size() != 0) {

      int lowest = 0;
      for (int i = 0; i < queue.size(); i++) {
        if (queue.get(i).getDistance() < queue.get(lowest).getDistance()) {
          lowest = i;
        }
      }

      Vertex lowestElementInQueue = queue.get(lowest);

      // stop the loop if the destination is reached
      if (lowestElementInQueue.getId() == destinationVertexID) break;

      queue.remove(lowestElementInQueue);

      Collection<Edge<Vertex>> edgesOfFirstVertex = graph.getIncidentEdges(lowestElementInQueue);

      if (edgesOfFirstVertex.size() != 0) {
        for (Edge<Vertex> edge : edgesOfFirstVertex) {
          Vertex neighbour = edge.getVertexB();
          int weightOfEdge = edge.getWeight();
          if (weightOfEdge < 0) {
            throw new IllegalArgumentException(
                "one edge of " + lowestElementInQueue.getId() + " is negative");
          }

          relax(lowestElementInQueue, neighbour, weightOfEdge);
        }
      }
    }

    ResultsDisplay.printResults(graph);
    ResultsDisplay.printTheShortestWay(graph, startVertexID, destinationVertexID);
  }
  /**
   * Returns the shortest path from a to b in the graph, or null if there is no such path. Assumes
   * all edge weights are nonnegative. Uses Dijkstra's algorithm.
   *
   * @param a the starting vertex
   * @param b the destination vertex
   * @return a Path where the vertices indicate the path from a to b in order and contains a (first)
   *     and b (last) and the cost is the cost of the path. Returns null if b is not reachable from
   *     a.
   * @throws IllegalArgumentException if a or b does not exist.
   */
  public Path shortestPath(Vertex a, Vertex b) {

    List<Vertex> vertexList = new ArrayList<Vertex>();
    VertexComparator vcp = new VertexComparator();
    PriorityQueue<Vertex> vertexQueue =
        new PriorityQueue<Vertex>(10, vcp); // queue for unknow vertex

    // If the start and end vertex are equal
    // return a path containing one vertex and a cost of 0.
    if (a.equals(b)) {
      vertexList.add(a);
      return new Path(vertexList, 0);
    }

    // if the start and end vertex are not equal:

    // if there is no path starting from a, return null
    if (!adj.containsKey(a)) {
      return null;
    }

    // for (Vertex v : this.vertices() ) {
    //    System.out.println(v.known);
    // }

    // initialize before searching path
    for (Vertex v : adj.keySet()) {
      // variables in adj.keySet() are actually pointers pointing to different memory with those in
      // this.vertices()
      // what we need is actually to change those in memory pointed by this.vertices()
      // have no idea why this.vertices.get() method did not work
      // thus I have to implement as below
      Vertex vn = v; // actually this is a bad initialization
      for (Vertex vi : this.vertices()) {
        if (vi.equals(v)) {
          vn = vi;
        }
      }

      vn.known = false;
      // set all vertex distance to infinity
      vn.distance = Integer.MAX_VALUE;
      // vn.distance = 99999;
      vertexQueue.add(vn);
    }
    // System.exit(1);
    // Set source vertex distance to 0
    for (Vertex vn : this.vertices()) {
      if (vn.equals(a)) {
        vertexQueue.remove(vn);
        vn.distance = 0;
        vn.previous = vn;
        // update vn in vertexQueue
        vertexQueue.add(vn);
      }
    }
    // a.distance = 0;
    // a.previous = a;
    // vertexQueue.remove(a);
    // vertexList.add(a);

    Vertex end = b;
    for (Vertex vn : this.vertices()) {
      if (vn.equals(b)) {
        end = vn;
      }
    }
    // for (Vertex v : this.vertices() ) {
    //    System.out.println(v.distance);
    // }
    System.out.println("start searching...");
    // while ( (!vertexQueue.isEmpty()) && (end.known == false) ) { //while there are still unknow
    // vertex and vertex b is unknown
    while ((!vertexQueue
        .isEmpty())) { // while there are still unknow vertex and vertex b is unknown
      // System.out.println("elements in vertexQueue at beginning:");
      // for (Vertex v : vertexQueue ) {
      //    System.out.println(v.getLabel());
      //    System.out.println("distance: " + v.distance);
      // }
      Vertex nt = vertexQueue.poll(); // unknown node with smallest distance
      // System.out.println("marked " + nt + " as known.");
      // System.out.println("its current distance: " + nt.distance);
      nt.known = true;
      for (Edge e : adj.get(nt)) {
        // search for vertex with the same name as e.getDestination() in this.vertices()
        Vertex en = e.getDestination();
        for (Vertex vn : this.vertices()) {
          if (vn.equals(e.getDestination())) {
            en = vn;
          }
        }

        if (!en.known) {
          if ((nt.distance + e.getWeight()) < en.distance) {
            // update en in vertexQueue
            vertexQueue.remove(en);
            en.distance = nt.distance + e.getWeight();
            en.previous = nt;
            vertexQueue.add(en);
          }
        }
      }
    }
    System.out.println("finished computing shortest path.");
    // for (Vertex v : this.vertices() ) {
    //    System.out.println(v.distance);
    // }

    // traverse to get path from a to b
    Vertex tmp = end;
    while (!tmp.equals(a)) {
      vertexList.add(0, tmp); // may need a heap here?
      tmp = tmp.previous;
    }
    vertexList.add(0, a);
    return new Path(vertexList, end.distance);

    // TODO: after searching for all possible path, return null if there is no path from a to b

  }