public static int getSolvedPC(MJIEnv env, int objRef) {
   PathCondition pc = getPC(env);
   if (pc != null) {
     pc.solve();
     return env.newString(pc.toString());
   }
   return env.newString("");
 }
Example #2
0
  @Override
  public Instruction execute(ThreadInfo th) {
    IntegerExpression sym_lval =
        (IntegerExpression) th.getModifiableTopFrame().getLongOperandAttr();
    if (sym_lval == null) {
      return super.execute(th);
    } else {
      // throw new RuntimeException("## Error: symbolic L2F not yet hanled ");

      // here we get a hold of the current path condition and
      // add an extra mixed constraint sym_dval==sym_ival

      ChoiceGenerator<?> cg;
      if (!th.isFirstStepInsn()) { // first time around
        cg = new PCChoiceGenerator(1); // only one choice
        th.getVM().getSystemState().setNextChoiceGenerator(cg);
        return this;
      } else { // this is what really returns results
        cg = th.getVM().getSystemState().getChoiceGenerator();
        assert (cg instanceof PCChoiceGenerator) : "expected PCChoiceGenerator, got: " + cg;
      }

      // get the path condition from the
      // previous choice generator of the same type

      PathCondition pc;
      ChoiceGenerator<?> prev_cg = cg.getPreviousChoiceGenerator();
      while (!((prev_cg == null) || (prev_cg instanceof PCChoiceGenerator))) {
        prev_cg = prev_cg.getPreviousChoiceGenerator();
      }

      if (prev_cg == null)
        pc = new PathCondition(); // TODO: handling of preconditions needs to be changed
      else pc = ((PCChoiceGenerator) prev_cg).getCurrentPC();
      assert pc != null;
      StackFrame sf = th.getModifiableTopFrame();
      sf.popLong();
      sf.push(0, false); // for symbolic expressions, the concrete value does not matter
      SymbolicReal sym_fval = new SymbolicReal();

      sf.setOperandAttr(sym_fval);

      pc._addDet(Comparator.EQ, sym_fval, sym_lval);

      if (!pc.simplify()) { // not satisfiable
        th.getVM().getSystemState().setIgnored(true);
      } else {
        // pc.solve();
        ((PCChoiceGenerator) cg).setCurrentPC(pc);
        // System.out.println(((PCChoiceGenerator) cg).getCurrentPC());
      }

      // System.out.println("Execute L2F: " + sf.getLongOperandAttr());
      return getNext(th);
    }
  }
  // the purpose of this method is to set the PCheap to the "eq null" constraint for the input
  // specified w/ stringRef
  public static int makeSymbolicNull(MJIEnv env, int objRef, int stringRef) {

    // introduce a heap choice generator for the element in the heap
    ThreadInfo ti = env.getVM().getCurrentThread();
    SystemState ss = env.getVM().getSystemState();
    ChoiceGenerator<?> cg;

    if (!ti.isFirstStepInsn()) {
      cg = new HeapChoiceGenerator(1); // new
      ss.setNextChoiceGenerator(cg);
      env.repeatInvocation();
      return -1; // not used anyways
    }
    // else this is what really returns results

    cg = ss.getChoiceGenerator();
    assert (cg instanceof HeapChoiceGenerator) : "expected HeapChoiceGenerator, got: " + cg;

    // see if there were more inputs added before
    ChoiceGenerator<?> prevHeapCG = cg.getPreviousChoiceGenerator();
    while (!((prevHeapCG == null) || (prevHeapCG instanceof HeapChoiceGenerator))) {
      prevHeapCG = prevHeapCG.getPreviousChoiceGenerator();
    }

    PathCondition pcHeap;
    SymbolicInputHeap symInputHeap;
    if (prevHeapCG == null) {

      pcHeap = new PathCondition();
      symInputHeap = new SymbolicInputHeap();
    } else {
      pcHeap = ((HeapChoiceGenerator) prevHeapCG).getCurrentPCheap();
      symInputHeap = ((HeapChoiceGenerator) prevHeapCG).getCurrentSymInputHeap();
    }

    String name = env.getStringObject(stringRef);
    String refChain =
        name + "[-1]"; // why is the type used here? should use the name of the field instead

    SymbolicInteger newSymRef = new SymbolicInteger(refChain);

    // create new HeapNode based on above info
    // update associated symbolic input heap

    pcHeap._addDet(Comparator.EQ, newSymRef, new IntegerConstant(-1));
    ((HeapChoiceGenerator) cg).setCurrentPCheap(pcHeap);
    ((HeapChoiceGenerator) cg).setCurrentSymInputHeap(symInputHeap);
    // System.out.println(">>>>>>>>>>>> initial pcHeap: " + pcHeap.toString());
    return -1;
  }
Example #4
0
 private void exec(String name, Search search) {
   VM vm = search.getVM();
   PCChoiceGenerator choiceGenerator = vm.getLastChoiceGeneratorOfType(PCChoiceGenerator.class);
   if (choiceGenerator != null) {
     PathCondition pc = choiceGenerator.getCurrentPC();
     if (search.getErrors().size() < 0) {
       return;
     }
     Property property = search.getLastError().getProperty();
     if (!property.getErrorMessage().contains(AssertionError.class.getCanonicalName())) {
       pc.header = pc.header.not();
     }
     /*
      * if (property instanceof NoUncaughtExceptionsProperty) {
      * NoUncaughtExceptionsProperty noUncaughtExceptionsProperty =
      * (NoUncaughtExceptionsProperty) property; String clName =
      * noUncaughtExceptionsProperty
      * .getUncaughtExceptionInfo().getCauseClassname();
      * if(!clName.equals(AssertionError.class.getCanonicalName())) {
      *
      * } System.out.println(clName); }
      */
     //
     /*
      * if (instruction instanceof IfInstruction) { if
      * (((IfInstruction) instruction).getConditionValue()) {
      * pc.solve();
      *
      * } }
      */
     pc.solve();
     Map<String, Object> varsVals = new HashMap<String, Object>();
     pc.header.getVarVals(varsVals);
     if (varsVals.containsKey("guess_fix")) {
       this.result = varsVals.get("guess_fix");
       if (processor.getType().equals(Boolean.class)) {
         this.result = this.result.equals(1);
       }
     }
     logger.debug("JPF Result " + this.result);
   }
 }
Example #5
0
  @Override
  public void advance() {
    super.advance();

    System.err.println("AtomBuchiCG.advance: " + toString());

    if (originalPC == null) {
      return;
    }

    PathCondition guardPC = originalPC.make_copy();
    for (Literal<String> l : node.getOutgoingEdges().get(index).getGuard()) {
      Atom a = stringToAtom(l.getAtom());

      Set<Constraint> constraints = a.getConstraints();
      System.err.println(
          "AtomBuchiCG.advance: for guard="
              + l.getAtom()
              + ", atom="
              + a
              + ", atom.text="
              + a.getText()
              + ", constraints="
              + constraints);
      if (constraints == null) {
        continue;
      }
      for (Constraint c : constraints) {
        if (l.isNegated()) {
          guardPC.prependUnlessRepeated(c.not());
        } else {
          guardPC.prependUnlessRepeated(c);
        }
      }
    }
    setPC(guardPC);
  }
Example #6
0
  @Override
  public Instruction execute(SystemState ss, KernelState ks, ThreadInfo ti) {

    StackFrame sf = ti.getTopFrame();

    IntegerExpression sym_v1 = (IntegerExpression) sf.getOperandAttr(1);
    IntegerExpression sym_v2 = (IntegerExpression) sf.getOperandAttr(0);

    if ((sym_v1 == null) && (sym_v2 == null)) { // both conditions are concrete
      // System.out.println("Execute IF_ICMPEQ: The conditions are concrete");
      return super.execute(ss, ks, ti);
    } else { // at least one condition is symbolic
      ChoiceGenerator<?> cg;

      if (!ti.isFirstStepInsn()) { // first time around
        cg = new PCChoiceGenerator(2);
        ss.setNextChoiceGenerator(cg);
        return this;
      } else { // this is what really returns results
        cg = ss.getChoiceGenerator();
        assert (cg instanceof PCChoiceGenerator) : "expected PCChoiceGenerator, got: " + cg;
        conditionValue = (Integer) cg.getNextChoice() == 0 ? false : true;
      }

      int v2 = ti.pop();
      int v1 = ti.pop();
      // System.out.println("Execute IF_ICMPEQ: "+ conditionValue);
      PathCondition pc;

      // pc is updated with the pc stored in the choice generator above
      // get the path condition from the
      // previous choice generator of the same type

      ChoiceGenerator<?> prev_cg = cg.getPreviousChoiceGenerator();
      while (!((prev_cg == null) || (prev_cg instanceof PCChoiceGenerator))) {
        prev_cg = prev_cg.getPreviousChoiceGenerator();
      }

      if (prev_cg == null) pc = new PathCondition();
      else pc = ((PCChoiceGenerator) prev_cg).getCurrentPC();

      assert pc != null;

      if (conditionValue) {
        if (sym_v1 != null) {
          if (sym_v2 != null) { // both are symbolic values
            pc._addDet(Comparator.EQ, sym_v1, sym_v2);
          } else pc._addDet(Comparator.EQ, sym_v1, v2);
        } else pc._addDet(Comparator.EQ, v1, sym_v2);
        if (!pc.simplify()) { // not satisfiable
          ss.setIgnored(true);
        } else {
          // pc.solve();
          ((PCChoiceGenerator) cg).setCurrentPC(pc);
          //	System.out.println(((PCChoiceGenerator) cg).getCurrentPC());
        }
        return getTarget();
      } else {
        if (sym_v1 != null) {
          if (sym_v2 != null) { // both are symbolic values
            pc._addDet(Comparator.NE, sym_v1, sym_v2);
          } else pc._addDet(Comparator.NE, sym_v1, v2);
        } else pc._addDet(Comparator.NE, v1, sym_v2);
        if (!pc.simplify()) { // not satisfiable
          ss.setIgnored(true);
        } else {
          // pc.solve();
          ((PCChoiceGenerator) cg).setCurrentPC(pc);
          // System.out.println(((PCChoiceGenerator) cg).getCurrentPC());
        }
        return getNext(ti);
      }
    }
  }
Example #7
0
  @SuppressWarnings("deprecation")
  @Override
  public Instruction execute(ThreadInfo ti) {
    StackFrame sf = ti.getModifiableTopFrame();
    IntegerExpression sym_v = (IntegerExpression) sf.getOperandAttr();

    if (sym_v == null) { // the condition is concrete
      return super.execute(ti);
    } else { // the condition is symbolic
      ChoiceGenerator<?> cg;

      if (!ti.isFirstStepInsn()) { // first time around
        cg = new PCChoiceGenerator(matches.length + 1);
        ((PCChoiceGenerator) cg).setOffset(this.position);
        ((PCChoiceGenerator) cg).setMethodName(this.getMethodInfo().getCompleteName());
        ti.getVM().getSystemState().setNextChoiceGenerator(cg);
        return this;
      } else { // this is what really returns results
        cg = ti.getVM().getSystemState().getChoiceGenerator();
        assert (cg instanceof PCChoiceGenerator) : "expected PCChoiceGenerator, got: " + cg;
      }
      sym_v = (IntegerExpression) sf.getOperandAttr();
      sf.pop();
      PathCondition pc;
      // pc is updated with the pc stored in the choice generator above
      // get the path condition from the
      // previous choice generator of the same type

      // TODO: could be optimized to not do this for each choice
      ChoiceGenerator<?> prev_cg = cg.getPreviousChoiceGeneratorOfType(PCChoiceGenerator.class);

      if (prev_cg == null) pc = new PathCondition();
      else pc = ((PCChoiceGenerator) prev_cg).getCurrentPC();

      assert pc != null;
      int idx = (Integer) cg.getNextChoice();
      if (idx == matches.length) { // default branch
        lastIdx = DEFAULT;
        for (int i = 0; i < matches.length; i++) pc._addDet(Comparator.NE, sym_v, matches[i]);
        if (!pc.simplify()) { // not satisfiable
          ti.getVM().getSystemState().setIgnored(true);
        } else {
          // pc.solve();
          ((PCChoiceGenerator) cg).setCurrentPC(pc);
          // System.out.println(((PCChoiceGenerator) cg).getCurrentPC());
        }
        return mi.getInstructionAt(target);
      } else {
        lastIdx = idx;
        // System.out.println("index "+idx);
        pc._addDet(Comparator.EQ, sym_v, matches[idx]);
        // System.out.println(sym_v + "eq"+ matches[idx]);
        // System.out.println("pc after "+pc);
        if (!pc.simplify()) { // not satisfiable
          ti.getVM().getSystemState().setIgnored(true);
        } else {
          // pc.solve();
          ((PCChoiceGenerator) cg).setCurrentPC(pc);
          // System.out.println(((PCChoiceGenerator) cg).getCurrentPC());
        }
        return mi.getInstructionAt(targets[idx]);
      }
    }
  }
Example #8
0
  @Override
  public Instruction execute(ThreadInfo th) {
    StackFrame sf = th.getModifiableTopFrame();
    IntegerExpression sym_v1 = (IntegerExpression) sf.getOperandAttr(0);
    IntegerExpression sym_v2 = (IntegerExpression) sf.getOperandAttr(1);
    int v1, v2;

    if (sym_v1 == null && sym_v2 == null)
      return super.execute(th); // we'll still do the concrete execution

    // result is symbolic

    if (sym_v1 == null && sym_v2 != null) {
      v1 = sf.pop();
      v2 = sf.pop();
      if (v1 == 0) return th.createAndThrowException("java.lang.ArithmeticException", "div by 0");
      sf.push(0, false);
      IntegerExpression result = sym_v2._div(v1);
      sf.setOperandAttr(result);
      return getNext(th);
    }

    // div by zero check affects path condition
    // sym_v1 is non-null and should be checked against zero

    ChoiceGenerator<?> cg;
    boolean condition;

    if (!th.isFirstStepInsn()) { // first time around
      cg = new PCChoiceGenerator(2);
      ((PCChoiceGenerator) cg).setOffset(this.position);
      ((PCChoiceGenerator) cg).setMethodName(this.getMethodInfo().getFullName());
      th.getVM().setNextChoiceGenerator(cg);
      return this;
    } else { // this is what really returns results
      cg = th.getVM().getChoiceGenerator();
      assert (cg instanceof PCChoiceGenerator) : "expected PCChoiceGenerator, got: " + cg;
      condition = (Integer) cg.getNextChoice() == 0 ? false : true;
    }

    v1 = sf.pop();
    v2 = sf.pop();
    sf.push(0, false);

    PathCondition pc;
    ChoiceGenerator<?> prev_cg = cg.getPreviousChoiceGeneratorOfType(PCChoiceGenerator.class);

    if (prev_cg == null) pc = new PathCondition();
    else pc = ((PCChoiceGenerator) prev_cg).getCurrentPC();

    assert pc != null;

    if (condition) { // check div by zero
      pc._addDet(Comparator.EQ, sym_v1, 0);
      if (pc.simplify()) { // satisfiable
        ((PCChoiceGenerator) cg).setCurrentPC(pc);

        return th.createAndThrowException("java.lang.ArithmeticException", "div by 0");
      } else {
        th.getVM().getSystemState().setIgnored(true);
        return getNext(th);
      }
    } else {
      pc._addDet(Comparator.NE, sym_v1, 0);
      if (pc.simplify()) { // satisfiable
        ((PCChoiceGenerator) cg).setCurrentPC(pc);

        // set the result
        IntegerExpression result;
        if (sym_v2 != null) result = sym_v2._div(sym_v1);
        else result = sym_v1._div_reverse(v2);

        sf = th.getModifiableTopFrame();
        sf.setOperandAttr(result);
        return getNext(th);

      } else {
        th.getVM().getSystemState().setIgnored(true);
        return getNext(th);
      }
    }
  }
	@Override
	public Boolean solve() {

		for (int i = 0; i < numSolvers; i++) {
			try{
				if (ignoredSolvers[i]) {
					System.out.println("ignoring solver " + probs[i].toString() + ": unsupported operation");
				} else {
					Boolean s = probs[i].solve();
					if (i > 0 && s != null && s) { // skip coral
						Env check = this.check(intVars, realVars, i);
						boolean s2 = (check.getResult() == Result.SAT) ? true : false;
						if (s2) {
							solutions[i] = s;
						} else {
							System.out
									.println("## Symlib of Coral does not agree with  " + i + " posted solution");
							solutions[i] = false;
						}
					} else {
						solutions[i] = (s == null) ? false : s;
					}
					// if (s == null) {
					// solutions[i] = false;
					// } else {
					// solutions[i] = s;
					// }
				}
			}
			catch(Exception _){
				solutions[i] = false;
				System.out.println("Solver " + i + " threw an exception");
				_.printStackTrace();
			}

			if (alwaysPrint) {
				System.out.println("Solver " + Integer.toString(i) + ": " + Boolean.toString(solutions[i]));
			}
		}

		// matrix update
		solvingDiff.update(solutions);

		if (!alwaysPrint) {
			boolean first = solutions[0];
			boolean print = false;
			for (int j = 1; j < numSolvers; j++) {
				if (solutions[j] != first) {
					print = true;
					break;
				}
			}
			if (print) {
				System.out.println("---- SOLVERS DISAGREE! ------");
				System.out.println(p.toString());
				for (int i = 0; i < numSolvers; i++) {
					System.out.println("   Solver " + Integer.toString(i) + ": "
							+ Boolean.toString(solutions[i]));
				}
			}
		}
		for (int i = 0; i < numSolvers; i++){
			if(solutions[i]){
				selected = i;
				break;
			}
		}

		return solutions[selected];
	}
Example #10
0
  @Override
  public Instruction execute(ThreadInfo ti) {
    // We may need to add the case where we have a smybolic index and a concrete array

    IntegerExpression indexAttr = null;
    ArrayExpression arrayAttr = null;
    StackFrame frame = ti.getModifiableTopFrame();
    int arrayRef = peekArrayRef(ti); // need to be polymorphic, could be LongArrayStore

    if (arrayRef == MJIEnv.NULL) {
      return ti.createAndThrowException("java.lang.NullPointerException");
    }

    // Retrieve the array expression if it was previously in the pathcondition, and store it as an
    // array attr
    PCChoiceGenerator temp_cg =
        (PCChoiceGenerator) ti.getVM().getLastChoiceGeneratorOfType(PCChoiceGenerator.class);
    if (temp_cg != null) {
      if (temp_cg
          .getCurrentPC()
          .arrayExpressions
          .containsKey(ti.getElementInfo(ti.getModifiableTopFrame().peek(2)).toString())) {
        ti.getModifiableTopFrame()
            .setOperandAttr(
                2,
                temp_cg
                    .getCurrentPC()
                    .arrayExpressions
                    .get(ti.getElementInfo(ti.getModifiableTopFrame().peek(2)).toString()));
      }
    }

    // If only the value is symbolic, we use the concrete instruction
    if (peekArrayAttr(ti) == null || !(peekArrayAttr(ti) instanceof ArrayExpression)) {
      // In this case, the array isn't symbolic
      if (peekIndexAttr(ti) == null || !(peekIndexAttr(ti) instanceof IntegerExpression)) {
        return super.execute(ti);
      }
    }

    ChoiceGenerator<?> cg;

    if (!ti.isFirstStepInsn()) { // first time around
      cg = new PCChoiceGenerator(3);
      ((PCChoiceGenerator) cg).setOffset(this.position);
      ((PCChoiceGenerator) cg).setMethodName(this.getMethodInfo().getFullName());
      ti.getVM().setNextChoiceGenerator(cg);
      return this;
    } else { // this is what really returns results
      cg = ti.getVM().getChoiceGenerator();
      assert (cg instanceof PCChoiceGenerator) : "expected PCChoiceGenerator, got: " + cg;
    }

    PathCondition pc;
    ChoiceGenerator<?> prev_cg = cg.getPreviousChoiceGeneratorOfType(PCChoiceGenerator.class);

    if (prev_cg == null) pc = new PathCondition();
    else pc = ((PCChoiceGenerator) prev_cg).getCurrentPC();

    assert pc != null;

    if (peekIndexAttr(ti) == null || !(peekIndexAttr(ti) instanceof IntegerExpression)) {
      int index = ti.getTopFrame().peek(1);
      indexAttr = new IntegerConstant(index);
    } else {
      indexAttr = (IntegerExpression) peekIndexAttr(ti);
    }

    assert (indexAttr != null) : "indexAttr shouldn't be null in FASTORE instruction";

    if (peekArrayAttr(ti) == null || !(peekArrayAttr(ti) instanceof ArrayExpression)) {
      // In this case, the array isn't symbolic
      if (peekIndexAttr(ti) == null || !(peekIndexAttr(ti) instanceof IntegerExpression)) {
        return super.execute(ti);
      } else {
        // We create a symbolic array out of the concrete array
        ElementInfo arrayInfo = ti.getElementInfo(arrayRef);
        arrayAttr = ArrayExpression.create(arrayInfo.toString(), arrayInfo.arrayLength());
        // We add the constraints about all the elements of the array
        for (int i = 0; i < arrayInfo.arrayLength(); i++) {
          float arrValue = arrayInfo.getFloatElement(i);
          pc._addDet(
              Comparator.EQ,
              new SelectExpression(arrayAttr, new IntegerConstant(i)),
              new RealConstant(arrValue));
        }
      }
    } else {
      arrayAttr = (ArrayExpression) peekArrayAttr(ti);
    }
    assert (arrayAttr != null) : "arrayAttr shouldn't be null in FASTORE instruction";

    if ((Integer) cg.getNextChoice() == 1) { // check bounds of the index
      pc._addDet(Comparator.GE, indexAttr, arrayAttr.length);
      if (pc.simplify()) { // satisfiable
        ((PCChoiceGenerator) cg).setCurrentPC(pc);
        return ti.createAndThrowException(
            "java.lang.ArrayIndexOutOfBoundsException", "index greater than array bounds");
      } else {
        ti.getVM().getSystemState().setIgnored(true);
        return getNext(ti);
      }
    } else if ((Integer) cg.getNextChoice() == 2) {
      pc._addDet(Comparator.LT, indexAttr, new IntegerConstant(0));
      if (pc.simplify()) { // satisfiable
        ((PCChoiceGenerator) cg).setCurrentPC(pc);
        return ti.createAndThrowException(
            "java.lang.ArrayIndexOutOfBoundsException", "index smaller than array bounds");
      } else {
        ti.getVM().getSystemState().setIgnored(true);
        return getNext(ti);
      }
    } else {
      pc._addDet(Comparator.LT, indexAttr, arrayAttr.length);
      pc._addDet(Comparator.GE, indexAttr, new IntegerConstant(0));
      if (pc.simplify()) { // satisfiable
        ((PCChoiceGenerator) cg).setCurrentPC(pc);
        RealExpression sym_value = null;
        if (frame.getOperandAttr(0) == null
            || !(frame.getOperandAttr(0) instanceof RealExpression)) {
          float value = frame.popFloat();
          sym_value = new RealConstant(value);
        } else {
          // The value is symbolic.
          sym_value = (RealExpression) frame.getOperandAttr(0);
          frame.popFloat();
        }
        // We create a new arrayAttr, and inherits information from the previous attribute
        ArrayExpression newArrayAttr = new ArrayExpression(arrayAttr);
        frame.pop(2); // We pop the array and the index

        RealStoreExpression se = new RealStoreExpression(arrayAttr, indexAttr, sym_value);
        pc._addDet(Comparator.EQ, se, newArrayAttr);
        pc.arrayExpressions.put(newArrayAttr.getRootName(), newArrayAttr);

        return getNext(ti);
      } else {
        ti.getVM().getSystemState().setIgnored(true);
        return getNext(ti);
      }
    }
  }
Example #11
0
  public AtomBuchiCG(Node<String> n) {
    super(n);

    originalPC = PathCondition.getPC(JVM.getVM());
  }
  public static void makeFieldsSymbolic(MJIEnv env, int objRef, int stringRef, int objvRef) {
    // makes all the fields of obj v symbolic and adds obj v to the symbolic heap to kick off lazy
    // initialization
    if (objvRef == -1) throw new RuntimeException("## Error: null object");
    // introduce a heap choice generator for the element in the heap
    ThreadInfo ti = env.getVM().getCurrentThread();
    SystemState ss = env.getVM().getSystemState();
    ChoiceGenerator<?> cg;

    if (!ti.isFirstStepInsn()) {
      cg = new HeapChoiceGenerator(1); // new
      ss.setNextChoiceGenerator(cg);
      env.repeatInvocation();
      return; // not used anyways
    }
    // else this is what really returns results

    cg = ss.getChoiceGenerator();
    assert (cg instanceof HeapChoiceGenerator) : "expected HeapChoiceGenerator, got: " + cg;

    // see if there were more inputs added before
    ChoiceGenerator<?> prevHeapCG = cg.getPreviousChoiceGenerator();
    while (!((prevHeapCG == null) || (prevHeapCG instanceof HeapChoiceGenerator))) {
      prevHeapCG = prevHeapCG.getPreviousChoiceGenerator();
    }

    PathCondition pcHeap;
    SymbolicInputHeap symInputHeap;
    if (prevHeapCG == null) {

      pcHeap = new PathCondition();
      symInputHeap = new SymbolicInputHeap();
    } else {
      pcHeap = ((HeapChoiceGenerator) prevHeapCG).getCurrentPCheap();
      symInputHeap = ((HeapChoiceGenerator) prevHeapCG).getCurrentSymInputHeap();
    }

    // set all the fields to be symbolic
    ClassInfo ci = env.getClassInfo(objvRef);
    FieldInfo[] fields = ci.getDeclaredInstanceFields();
    FieldInfo[] staticFields = ci.getDeclaredStaticFields();

    String name = env.getStringObject(stringRef);
    String refChain =
        name + "[" + objvRef
            + "]"; // why is the type used here? should use the name of the field instead

    SymbolicInteger newSymRef = new SymbolicInteger(refChain);
    // ElementInfo eiRef = DynamicArea.getHeap().get(objvRef);
    ElementInfo eiRef = JVM.getVM().getHeap().get(objvRef);
    Helper.initializeInstanceFields(fields, eiRef, refChain);
    Helper.initializeStaticFields(staticFields, ci, ti);

    // create new HeapNode based on above info
    // update associated symbolic input heap

    ClassInfo typeClassInfo = eiRef.getClassInfo();

    HeapNode n = new HeapNode(objvRef, typeClassInfo, newSymRef);
    symInputHeap._add(n);
    pcHeap._addDet(Comparator.NE, newSymRef, new IntegerConstant(-1));
    ((HeapChoiceGenerator) cg).setCurrentPCheap(pcHeap);
    ((HeapChoiceGenerator) cg).setCurrentSymInputHeap(symInputHeap);
    // System.out.println(">>>>>>>>>>>> initial pcHeap: " + pcHeap.toString());
    return;
  }
Example #13
0
  public static HelperResult addNewArrayHeapNode(
      ClassInfo typeClassInfo,
      ThreadInfo ti,
      Object attr,
      PathCondition pcHeap,
      SymbolicInputHeap symInputHeap,
      int numSymRefs,
      HeapNode[] prevSymRefs,
      boolean setShared,
      IntegerExpression indexAttr,
      int arrayRef) {
    int daIndex = ti.getHeap().newObject(typeClassInfo, ti).getObjectRef();
    ti.getHeap().registerPinDown(daIndex);
    String refChain =
        ((ArrayExpression) attr)
            .getName(); // + "[" + daIndex + "]"; // do we really need to add daIndex here?
    SymbolicInteger newSymRef = new SymbolicInteger(refChain);
    ElementInfo eiRef =
        ti.getModifiableElementInfo(daIndex); // ti.getElementInfo(daIndex); // TODO to review!
    if (setShared) {
      eiRef.setShared(ti, true); // ??
    }
    // daIndex.getObjectRef() -> number

    // neha: this change allows all the fields in the class hierarchy of the
    // object to be initialized as symbolic and not just its instance fields

    int numOfFields = eiRef.getNumberOfFields();
    FieldInfo[] fields = new FieldInfo[numOfFields];
    for (int fieldIndex = 0; fieldIndex < numOfFields; fieldIndex++) {
      fields[fieldIndex] = eiRef.getFieldInfo(fieldIndex);
    }

    Helper.initializeInstanceFields(fields, eiRef, refChain);

    // neha: this change allows all the static fields in the class hierarchy
    // of the object to be initialized as symbolic and not just its immediate
    // static fields
    ClassInfo superClass = typeClassInfo;
    while (superClass != null) {
      FieldInfo[] staticFields = superClass.getDeclaredStaticFields();
      Helper.initializeStaticFields(staticFields, superClass, ti);
      superClass = superClass.getSuperClass();
    }

    // Put symbolic array in PC if we create a new array.
    if (typeClassInfo.isArray()) {
      String typeClass = typeClassInfo.getType();
      ArrayExpression arrayAttr = null;
      if (typeClass.charAt(1) != 'L') {
        arrayAttr = new ArrayExpression(eiRef.toString());
      } else {
        arrayAttr =
            new ArrayExpression(eiRef.toString(), typeClass.substring(2, typeClass.length() - 1));
      }
      ti.getVM()
          .getLastChoiceGeneratorOfType(PCChoiceGenerator.class)
          .getCurrentPC()
          .arrayExpressions
          .put(eiRef.toString(), arrayAttr);
    }

    // create new HeapNode based on above info
    // update associated symbolic input heap
    ArrayHeapNode n = new ArrayHeapNode(daIndex, typeClassInfo, newSymRef, indexAttr, arrayRef);
    symInputHeap._add(n);
    pcHeap._addDet(Comparator.NE, newSymRef, new IntegerConstant(-1));
    pcHeap._addDet(Comparator.EQ, newSymRef, new IntegerConstant(numSymRefs));
    for (int i = 0; i < numSymRefs; i++)
      pcHeap._addDet(Comparator.NE, n.getSymbolic(), prevSymRefs[i].getSymbolic());
    HelperResult result = new HelperResult(n, daIndex);
    return result;
  }