/** * Decode. * * @param nbComp the nb comp * @param threshold the threshold * @param clusterSet the cluster set * @param featureSet the feature set * @param parameter the parameter * @return the cluster set * @throws Exception the exception */ public ClusterSet decode( int nbComp, double threshold, ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter) throws Exception { String mask = parameter.getParameterSegmentationOutputFile().getMask(); String oldModelKind = parameter.getParameterModel().getModelKindAsString(); int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents(); // ** Train GMM for each cluster. // ** GMM is a 8 component gaussian with diagonal covariance matrix // ** one GMM = one speaker = one cluster // ** initialization of the GMMs : // ** - same global covariance for each gaussian, // ** - 1/8 for the weight, // ** - means are initialized with the mean of 10 successive vectors taken parameter.getParameterModel().setModelKind("DIAG"); parameter.getParameterModel().setNumberOfComponents(nbComp); GMMArrayList gmmInitVect = new GMMArrayList(clusterSet.clusterGetSize()); MTrainInit.make(featureSet, clusterSet, gmmInitVect, parameter); // ** EM training of the initialized GMM GMMArrayList gmmVect = new GMMArrayList(clusterSet.clusterGetSize()); MTrainEM.make(featureSet, clusterSet, gmmInitVect, gmmVect, parameter); // ** set the penalty to move from the state i to the state j, penalty to move from i to i is // equal to 0 parameter.getParameterDecoder().setDecoderPenalty(String.valueOf(threshold)); // ** make Viterbi decoding using the 8-GMM set // ** one state = one GMM = one speaker = one cluster ClusterSet clustersDClust = MDecode.make(featureSet, clusterSet, gmmVect, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".d.seg"); MainTools.writeClusterSet(parameter, clustersDClust, false); } // ** move the boundaries of the segment in low energy part of the signal ClusterSet clustersAdjClust = SAdjSeg.make(featureSet, clustersDClust, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".adj.seg"); MainTools.writeClusterSet(parameter, clustersAdjClust, false); } parameter.getParameterSegmentationOutputFile().setMask(mask); parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent); parameter.getParameterModel().setModelKind(oldModelKind); return clustersAdjClust; }
/** * Speech. * * @param threshold the threshold * @param clustersSetBase the clusters set base * @param clustersSegInit the clusters seg init * @param clustersDClust the clusters d clust * @param featureSet the feature set * @param parameter the parameter * @return the cluster set * @throws Exception the exception */ public ClusterSet speech( String threshold, ClusterSet clustersSetBase, ClusterSet clustersSegInit, ClusterSet clustersDClust, AudioFeatureSet featureSet, Parameter parameter) throws Exception { String mask = parameter.getParameterSegmentationOutputFile().getMask(); String oldDecoderPenalty = parameter.getParameterDecoder().getDecoderPenaltyAsString(); // ** Reload MFCC, remove energy and add delta String FeatureFormat = "featureSetTransformation"; AudioFeatureSet featureSet2 = loadFeature( featureSet, parameter, clustersSetBase, FeatureFormat + ",1:3:2:0:0:0,13,0:0:0:0"); String dir = "ester2"; // ** load the model : 8 GMMs with 64 diagonal components InputStream pmsInputStream = getClass().getResourceAsStream(dir + "/sms.gmms"); GMMArrayList pmsVect = MainTools.readGMMContainer(pmsInputStream, parameter.getParameterModel()); // ** set penalties for the i to j states // ** 10 for the first and second model corresponding to boad/narrowband silence // ** 50 for the other jingle speech (f0 f2 f3 fx), jingle and music parameter.getParameterDecoder().setDecoderPenalty(threshold); ClusterSet clustersPMSClust = MDecode.make(featureSet2, clustersSegInit, pmsVect, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".sms.seg"); MainTools.writeClusterSet(parameter, clustersPMSClust, false); } parameter.getParameterSegmentationOutputFile().setMask(mask); parameter.getParameterDecoder().setDecoderPenalty(oldDecoderPenalty); // ** Filter the segmentation adj acoording the sms segmentation // ** add 25 frames to all speech segments // ** remove silence part if silence segment is less than 25 frames // ** if a speech segment is less than 150 frames, it will be merge to the left or right closest // segments int oldSegmentPadding = parameter.getParameterFilter().getSegmentPadding(); int oldSilenceMinimumLength = parameter.getParameterFilter().getSilenceMinimumLength(); int oldSpeechMinimumLength = parameter.getParameterFilter().getSpeechMinimumLength(); String oldSegmentationFilterFile = parameter.getParameterSegmentationFilterFile().getClusterFilterName(); parameter.getParameterFilter().setSegmentPadding(25); parameter.getParameterFilter().setSilenceMinimumLength(25); parameter.getParameterFilter().setSpeechMinimumLength(150); ClusterSet clustersFltClust = SFilter.make(clustersDClust, clustersPMSClust, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".flt.seg"); MainTools.writeClusterSet(parameter, clustersFltClust, false); parameter.getParameterSegmentationOutputFile().setMask(mask); } // ** segments of more than 20s are split according of silence present in the pms or using a gmm // silence detector InputStream silenceInputStream = getClass().getResourceAsStream(dir + "/s.gmms"); GMMArrayList sVect = MainTools.readGMMContainer(silenceInputStream, parameter.getParameterModel()); parameter.getParameterSegmentationFilterFile().setClusterFilterName("iS,iT,j"); ClusterSet clustersSplitClust = SSplitSeg.make(featureSet2, clustersFltClust, sVect, clustersPMSClust, parameter); if (parameter.getParameterDiarization().isSaveAllStep()) { parameter.getParameterSegmentationOutputFile().setMask(mask + ".spl.seg"); MainTools.writeClusterSet(parameter, clustersSplitClust, false); parameter.getParameterSegmentationOutputFile().setMask(mask); } parameter.getParameterSegmentationFilterFile().setClusterFilterName(oldSegmentationFilterFile); parameter.getParameterFilter().setSegmentPadding(oldSegmentPadding); parameter.getParameterFilter().setSilenceMinimumLength(oldSilenceMinimumLength); parameter.getParameterFilter().setSpeechMinimumLength(oldSpeechMinimumLength); return clustersSplitClust; }