/** * Requires selected population to be sorted by fitness. * * @param params refering parameter set * @param iterations number of iterations performed * @param selected selected population * @return true if the parameters seem ok or were corrected, false if new parameters must be * produced */ private boolean testAndCorrectNumerics( CMAParamSet params, int iterations, Population selected) { // not much left here boolean corrected = true; /* Flat Fitness, Test if function values are identical */ if (iterations > 1 && (selected.size() > 1)) { // selected pop is sorted if (nearlySame( selected.getEAIndividual(0).getFitness(), selected.getEAIndividual(selected.size() - 1).getFitness())) { if (TRACE_1) System.err.println( "flat fitness landscape, consider reformulation of fitness, step-size increased"); params.sigma *= Math.exp(0.2 + params.c_sig / params.d_sig); // sigma=0.1; } } if (!checkValidDouble(params.sigma)) { System.err.println("Error, unstable sigma!"); corrected = false; // params.sigma=params.firstSigma; // MK TODO // System.err.println( } /* Align (renormalize) scale C (and consequently sigma) */ /* e.g. for infinite stationary state simulations (noise * handling needs to be introduced for that) */ double fac = 1.; double minEig = 1e-12; double maxEig = 1e8; if (Mathematics.max(params.eigenvalues) < minEig) fac = 1. / Math.sqrt(Mathematics.max(params.eigenvalues)); else if (Mathematics.min(params.eigenvalues) > maxEig) fac = 1. / Math.sqrt(Mathematics.min(params.eigenvalues)); if (fac != 1.) { // System.err.println("Scaling by " + fac); params.sigma /= fac; for (int i = 0; i < params.meanX.length; ++i) { params.pathC[i] *= fac; params.eigenvalues[i] *= fac * fac; for (int j = 0; j <= i; ++j) { params.mC.set(i, j, params.mC.get(i, j) * fac * fac); if (i != j) params.mC.set(j, i, params.mC.get(i, j)); } } } return corrected; } // Test...
private void plotAll(Population pop) { // TODO double pos[], vel[]; for (int i = 0; i < pop.size(); i++) { pos = ((TribesExplorer) pop.getEAIndividual(i)).getDoubleData(); vel = ((TribesExplorer) pop.getEAIndividual(i)).getVelocity(); plotIndy(pos, vel, i); // hier weiter! } }
/** * This method allows you to merge to populations into an archive. This method will add elements * from pop to the archive but will also remove elements from the archive if the archive target * size is exceeded. * * @param pop The population that may add Individuals to the archive. */ public void addElementsToArchive(Population pop) { if (pop.getArchive() == null) pop.SetArchive(new Population()); // test for each element in population if it // is dominating a element in the archive for (int i = 0; i < pop.size(); i++) { if (this.isDominant((AbstractEAIndividual) pop.get(i), pop.getArchive())) { this.addIndividualToArchive( (AbstractEAIndividual) ((AbstractEAIndividual) pop.get(i)).clone(), pop.getArchive()); } } // Now clear the archive of surplus individuals Population archive = pop.getArchive(); this.m_Cleaner.removeSurplusIndividuals(archive); }
/** * Perform the main adaption of sigma and C using evolution paths. The evolution path is deduced * from the center of the selected population compared to the old mean value. See Hansen&Kern 04 * for further information. * * @param oldGen * @param selectedP */ public void adaptAfterSelection(Population oldGen, Population selectedP) { Population selectedSorted = selectedP.getSortedBestFirst(new AbstractEAIndividualComparator(-1)); int mu, lambda; mu = selectedP.size(); lambda = oldGen.size(); int generation = oldGen.getGeneration(); if (mu >= lambda) { // try to override by oldGen additional data: if (oldGen.hasData(EvolutionStrategies.esMuParam)) mu = (Integer) oldGen.getData(EvolutionStrategies.esMuParam); if (oldGen.hasData(EvolutionStrategies.esLambdaParam)) lambda = (Integer) oldGen.getData(EvolutionStrategies.esLambdaParam); } if (mu >= lambda) { mu = Math.max(1, lambda / 2); EVAERROR.errorMsgOnce( "Warning: invalid mu/lambda ratio! Setting mu to lambda/2 = " + mu + ", lambda = " + lambda); } CMAParamSet params; if (oldGen.getGeneration() <= 1) { // init new param set. At gen < 1 we shouldnt be called, but better do it once too // often if (oldGen.hasData(cmaParamsKey)) params = CMAParamSet.initCMAParams( (CMAParamSet) oldGen.getData(cmaParamsKey), mu, lambda, oldGen, getInitSigma(oldGen)); else params = CMAParamSet.initCMAParams(mu, lambda, oldGen, getInitSigma(oldGen)); } else { if (!oldGen.hasData(cmaParamsKey)) { if (oldGen.getGeneration() > 1) EVAERROR.errorMsgOnce("Error: population lost cma parameters. Incompatible optimizer?"); params = CMAParamSet.initCMAParams(mu, lambda, oldGen, getInitSigma(oldGen)); } else params = (CMAParamSet) oldGen.getData(cmaParamsKey); } if (lambda == 1 && (oldGen.size() == 1) && (selectedP.size() == 1) && (oldGen.getEAIndividual(0).equals(selectedP.getEAIndividual(0)))) { // nothing really happened, so do not adapt and just store default params lastParams = (CMAParamSet) params.clone(); oldGen.putData(cmaParamsKey, params); selectedP.putData(cmaParamsKey, params); return; } if (TRACE_1) { System.out.println("WCMA adaptGenerational **********"); // System.out.println("newPop measures: " + // BeanInspector.toString(newPop.getPopulationMeasures())); System.out.println("mu_eff: " + CMAParamSet.getMuEff(params.weights, mu)); System.out.println(params.toString()); System.out.println("*********************************"); } double[] newMeanX = calcMeanX(params.weights, selectedSorted); if (TRACE_1) System.out.println("newMeanX: " + BeanInspector.toString(newMeanX)); int dim = params.meanX.length; double[] BDz = new double[dim]; for (int i = 0; i < dim; i++) { /* calculate xmean and BDz~N(0,C) */ // Eq. 4 from HK04, most right term BDz[i] = Math.sqrt(CMAParamSet.getMuEff(params.weights, mu)) * (newMeanX[i] - params.meanX[i]) / getSigma(params, i); } // if (TRACE_2) System.out.println("BDz is " + BeanInspector.toString(BDz)); double[] newPathS = params.pathS.clone(); double[] newPathC = params.pathC.clone(); double[] zVect = new double[dim]; /* calculate z := D^(-1) * B^(-1) * BDz into artmp, we could have stored z instead */ for (int i = 0; i < dim; ++i) { double sum = 0.; for (int j = 0; j < dim; ++j) { sum += params.mB.get(j, i) * BDz[j]; // times B transposed, (Eq 4) in HK04 } if (params.eigenvalues[i] < 0) { EVAERROR.errorMsgOnce( "Warning: negative eigenvalue in MutateESRankMuCMA! (possibly multiple cases)"); zVect[i] = 0; } else { zVect[i] = sum / Math.sqrt(params.eigenvalues[i]); if (!checkValidDouble(zVect[i])) { System.err.println("Error, infinite zVect entry!"); zVect[i] = 0; // TODO MK } } } /* cumulation for sigma (ps) using B*z */ for (int i = 0; i < dim; ++i) { double sum = 0.; for (int j = 0; j < dim; ++j) sum += params.mB.get(i, j) * zVect[j]; newPathS[i] = (1. - params.c_sig) * params.pathS[i] + Math.sqrt(params.c_sig * (2. - params.c_sig)) * sum; if (!checkValidDouble(newPathS[i])) { System.err.println("Error, infinite pathS!"); } } // System.out.println("pathS diff: " + BeanInspector.toString(Mathematics.vvSub(newPathS, // pathS))); // System.out.println("newPathS is " + BeanInspector.toString(newPathS)); double psNorm = Mathematics.norm(newPathS); double hsig = 0; if (psNorm / Math.sqrt(1. - Math.pow(1. - params.c_sig, 2. * generation)) / expRandStepLen < 1.4 + 2. / (dim + 1.)) { hsig = 1; } for (int i = 0; i < dim; ++i) { newPathC[i] = (1. - getCc()) * params.pathC[i] + hsig * Math.sqrt(getCc() * (2. - getCc())) * BDz[i]; checkValidDouble(newPathC[i]); } // TODO missing: "remove momentum in ps" if (TRACE_1) { System.out.println("newPathC: " + BeanInspector.toString(newPathC)); System.out.println("newPathS: " + BeanInspector.toString(newPathS)); } if (TRACE_1) System.out.println("Bef: C is \n" + params.mC.toString()); if (params.meanX == null) params.meanX = newMeanX; updateCov(params, newPathC, newMeanX, hsig, mu, selectedSorted); updateBD(params); if (TRACE_2) System.out.println("Aft: C is " + params.mC.toString()); /* update of sigma */ double sigFact = Math.exp(((psNorm / expRandStepLen) - 1) * params.c_sig / params.d_sig); if (Double.isInfinite(sigFact)) params.sigma *= 10.; // in larger search spaces sigma tends to explode after init. else params.sigma *= sigFact; if (!testAndCorrectNumerics(params, generation, selectedSorted)) { // parameter seemingly exploded... params = CMAParamSet.initCMAParams( params, mu, lambda, params.meanX, ((InterfaceDataTypeDouble) oldGen.getEAIndividual(0)).getDoubleRange(), params.firstSigma); } if (TRACE_1) { System.out.println("sigma=" + params.sigma); System.out.print("psLen=" + (psNorm) + " "); outputParams(params, mu); } // take over data params.meanX = newMeanX; params.pathC = newPathC; params.pathS = newPathS; params.firstAdaptionDone = true; lastParams = (CMAParamSet) params.clone(); oldGen.putData(cmaParamsKey, params); selectedP.putData(cmaParamsKey, params); // if (TRACE_2) System.out.println("sampling around " + BeanInspector.toString(meanX)); }