/** * Coefficient squarefree factorization. * * @param coeff coefficient. * @return [p_1 -> e_1, ..., p_k -> e_k] with P = prod_{i=1,...,k} p_i^{e_i} and p_i * squarefree. */ @Override public SortedMap<C, Long> squarefreeFactors(C coeff) { if (coeff == null) { return null; } SortedMap<C, Long> factors = new TreeMap<C, Long>(); RingFactory<C> cfac = (RingFactory<C>) coeff.factory(); if (aCoFac != null) { AlgebraicNumber<C> an = (AlgebraicNumber<C>) (Object) coeff; if (cfac.isFinite()) { SquarefreeFiniteFieldCharP<C> reng = (SquarefreeFiniteFieldCharP) SquarefreeFactory.getImplementation(cfac); SortedMap<C, Long> rfactors = reng.rootCharacteristic(coeff); // ?? logger.info("rfactors,finite = " + rfactors); factors.putAll(rfactors); // return factors; } else { SquarefreeInfiniteAlgebraicFieldCharP<C> reng = (SquarefreeInfiniteAlgebraicFieldCharP) SquarefreeFactory.getImplementation(cfac); SortedMap<AlgebraicNumber<C>, Long> rfactors = reng.squarefreeFactors(an); logger.info("rfactors,infinite,algeb = " + rfactors); for (Map.Entry<AlgebraicNumber<C>, Long> me : rfactors.entrySet()) { AlgebraicNumber<C> c = me.getKey(); if (!c.isONE()) { C cr = (C) (Object) c; Long rk = me.getValue(); // rfactors.get(c); factors.put(cr, rk); } } } } else if (qCoFac != null) { Quotient<C> q = (Quotient<C>) (Object) coeff; SquarefreeInfiniteFieldCharP<C> reng = (SquarefreeInfiniteFieldCharP) SquarefreeFactory.getImplementation(cfac); SortedMap<Quotient<C>, Long> rfactors = reng.squarefreeFactors(q); logger.info("rfactors,infinite = " + rfactors); for (Map.Entry<Quotient<C>, Long> me : rfactors.entrySet()) { Quotient<C> c = me.getKey(); if (!c.isONE()) { C cr = (C) (Object) c; Long rk = me.getValue(); // rfactors.get(c); factors.put(cr, rk); } } } else if (cfac.isFinite()) { SquarefreeFiniteFieldCharP<C> reng = (SquarefreeFiniteFieldCharP) SquarefreeFactory.getImplementation(cfac); SortedMap<C, Long> rfactors = reng.rootCharacteristic(coeff); // ?? logger.info("rfactors,finite = " + rfactors); factors.putAll(rfactors); // return factors; } else { logger.warn("case " + cfac + " not implemented"); } return factors; }
/** * GenPolynomial absolute factorization of a irreducible polynomial. * * @param P irreducible! GenPolynomial. * @return factors container: [p_1,...,p_k] with P = prod_{i=1, ..., k} p_i in K(alpha)[x] for * suitable alpha and p_i irreducible over L[x], where K \subset K(alpha) \subset L is an * algebraically closed field over K. <b>Note:</b> K(alpha) not yet minimal. */ public Factors<C> factorsAbsoluteIrreducible(GenPolynomial<C> P) { if (P == null) { throw new RuntimeException(this.getClass().getName() + " P == null"); } if (P.isZERO()) { return new Factors<C>(P); } GenPolynomialRing<C> pfac = P.ring; // K[x] if (pfac.nvar <= 1) { return baseFactorsAbsoluteIrreducible(P); } if (!pfac.coFac.isField()) { throw new RuntimeException("only for field coefficients"); } List<GenPolynomial<C>> factors = new ArrayList<GenPolynomial<C>>(); if (P.degree() <= 1) { return new Factors<C>(P); } // find field extension K(alpha) GenPolynomial<C> up = P; RingFactory<C> cf = pfac.coFac; long cr = cf.characteristic().longValue(); // char might be larger if (cr == 0L) { cr = Long.MAX_VALUE; } long rp = 0L; for (int i = 0; i < (pfac.nvar - 1); i++) { rp = 0L; GenPolynomialRing<C> nfac = pfac.contract(1); String[] vn = new String[] {pfac.getVars()[pfac.nvar - 1]}; GenPolynomialRing<GenPolynomial<C>> rfac = new GenPolynomialRing<GenPolynomial<C>>(nfac, 1, pfac.tord, vn); GenPolynomial<GenPolynomial<C>> upr = PolyUtil.<C>recursive(rfac, up); // System.out.println("upr = " + upr); GenPolynomial<C> ep; do { if (rp >= cr) { throw new RuntimeException("elements of prime field exhausted: " + cr); } C r = cf.fromInteger(rp); // cf.random(rp); // System.out.println("r = " + r); ep = PolyUtil.<C>evaluateMain(nfac, upr, r); // System.out.println("ep = " + ep); rp++; } while (!isSquarefree(ep) /*todo: || ep.degree() <= 1*/); // max deg up = ep; pfac = nfac; } up = up.monic(); if (debug) { logger.info("P(" + rp + ") = " + up); // System.out.println("up = " + up); } if (debug && !isSquarefree(up)) { throw new RuntimeException("not irreducible up = " + up); } if (up.degree(0) <= 1) { return new Factors<C>(P); } // find irreducible factor of up List<GenPolynomial<C>> UF = baseFactorsSquarefree(up); // System.out.println("UF = " + UF); FactorsList<C> aUF = baseFactorsAbsoluteSquarefree(up); // System.out.println("aUF = " + aUF); AlgebraicNumberRing<C> arfac = aUF.findExtensionField(); // System.out.println("arfac = " + arfac); long e = up.degree(0); // search factor polynomial with smallest degree for (int i = 0; i < UF.size(); i++) { GenPolynomial<C> upi = UF.get(i); long d = upi.degree(0); if (1 <= d && d <= e) { up = upi; e = up.degree(0); } } if (up.degree(0) <= 1) { return new Factors<C>(P); } if (debug) { logger.info("field extension by " + up); } List<GenPolynomial<AlgebraicNumber<C>>> afactors = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); // setup field extension K(alpha) // String[] vars = new String[] { "z_" + Math.abs(up.hashCode() % 1000) }; String[] vars = pfac.newVars("z_"); pfac = pfac.clone(); String[] ovars = pfac.setVars(vars); // side effects! GenPolynomial<C> aup = pfac.copy(up); // hack to exchange the variables // AlgebraicNumberRing<C> afac = new AlgebraicNumberRing<C>(aup,true); // since irreducible AlgebraicNumberRing<C> afac = arfac; int depth = afac.depth(); // System.out.println("afac = " + afac); GenPolynomialRing<AlgebraicNumber<C>> pafac = new GenPolynomialRing<AlgebraicNumber<C>>(afac, P.ring.nvar, P.ring.tord, P.ring.getVars()); // System.out.println("pafac = " + pafac); // convert to K(alpha) GenPolynomial<AlgebraicNumber<C>> Pa = PolyUtil.<C>convertToRecAlgebraicCoefficients(depth, pafac, P); // System.out.println("Pa = " + Pa); // factor over K(alpha) FactorAbstract<AlgebraicNumber<C>> engine = FactorFactory.<C>getImplementation(afac); afactors = engine.factorsSquarefree(Pa); if (debug) { logger.info("K(alpha) factors multi = " + afactors); // System.out.println("K(alpha) factors = " + afactors); } if (afactors.size() <= 1) { return new Factors<C>(P); } // normalize first factor to monic GenPolynomial<AlgebraicNumber<C>> p1 = afactors.get(0); AlgebraicNumber<C> p1c = p1.leadingBaseCoefficient(); if (!p1c.isONE()) { GenPolynomial<AlgebraicNumber<C>> p2 = afactors.get(1); afactors.remove(p1); afactors.remove(p2); p1 = p1.divide(p1c); p2 = p2.multiply(p1c); afactors.add(p1); afactors.add(p2); } // recursion for splitting field // find minimal field extension K(beta) \subset K(alpha) return new Factors<C>(P, afac, Pa, afactors); }
/** * Univariate GenPolynomial algebraic partial fraction decomposition, Rothstein-Trager algorithm. * * @param A univariate GenPolynomial, deg(A) < deg(P). * @param P univariate squarefree GenPolynomial, gcd(A,P) == 1. * @return partial fraction container. */ @Deprecated public PartialFraction<C> baseAlgebraicPartialFractionIrreducible( GenPolynomial<C> A, GenPolynomial<C> P) { if (P == null || P.isZERO()) { throw new RuntimeException(" P == null or P == 0"); } // System.out.println("\nP_base_algeb_part = " + P); GenPolynomialRing<C> pfac = P.ring; // K[x] if (pfac.nvar > 1) { // System.out.println("facs_base_irred: univ"); throw new RuntimeException("only for univariate polynomials"); } if (!pfac.coFac.isField()) { // System.out.println("facs_base_irred: field"); throw new RuntimeException("only for field coefficients"); } List<C> cfactors = new ArrayList<C>(); List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); // P linear if (P.degree(0) <= 1) { cfactors.add(A.leadingBaseCoefficient()); cdenom.add(P); return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); } // deriviative GenPolynomial<C> Pp = PolyUtil.<C>baseDeriviative(P); // no: Pp = Pp.monic(); // System.out.println("\nP = " + P); // System.out.println("Pp = " + Pp); // Q[t] String[] vars = new String[] {"t"}; GenPolynomialRing<C> cfac = new GenPolynomialRing<C>(pfac.coFac, 1, pfac.tord, vars); GenPolynomial<C> t = cfac.univariate(0); // System.out.println("t = " + t); // Q[x][t] GenPolynomialRing<GenPolynomial<C>> rfac = new GenPolynomialRing<GenPolynomial<C>>(pfac, cfac); // sic // System.out.println("rfac = " + rfac.toScript()); // transform polynomials to bi-variate polynomial GenPolynomial<GenPolynomial<C>> Ac = PolyUfdUtil.<C>introduceLowerVariable(rfac, A); // System.out.println("Ac = " + Ac); GenPolynomial<GenPolynomial<C>> Pc = PolyUfdUtil.<C>introduceLowerVariable(rfac, P); // System.out.println("Pc = " + Pc); GenPolynomial<GenPolynomial<C>> Pcp = PolyUfdUtil.<C>introduceLowerVariable(rfac, Pp); // System.out.println("Pcp = " + Pcp); // Q[t][x] GenPolynomialRing<GenPolynomial<C>> rfac1 = Pc.ring; // System.out.println("rfac1 = " + rfac1.toScript()); // A - t P' GenPolynomial<GenPolynomial<C>> tc = rfac1.getONE().multiply(t); // System.out.println("tc = " + tc); GenPolynomial<GenPolynomial<C>> At = Ac.subtract(tc.multiply(Pcp)); // System.out.println("At = " + At); GreatestCommonDivisorSubres<C> engine = new GreatestCommonDivisorSubres<C>(); // = GCDFactory.<C>getImplementation( cfac.coFac ); GreatestCommonDivisorAbstract<AlgebraicNumber<C>> aengine = null; GenPolynomial<GenPolynomial<C>> Rc = engine.recursiveResultant(Pc, At); // System.out.println("Rc = " + Rc); GenPolynomial<C> res = Rc.leadingBaseCoefficient(); // no: res = res.monic(); // System.out.println("\nres = " + res); SortedMap<GenPolynomial<C>, Long> resfac = baseFactors(res); // System.out.println("resfac = " + resfac + "\n"); for (GenPolynomial<C> r : resfac.keySet()) { // System.out.println("\nr(t) = " + r); if (r.isConstant()) { continue; } // if ( r.degree(0) <= 1L ) { // System.out.println("warning linear factor in resultant ignored"); // continue; // //throw new RuntimeException("input not irreducible"); // } // vars = new String[] { "z_" + Math.abs(r.hashCode() % 1000) }; vars = pfac.newVars("z_"); pfac = pfac.clone(); vars = pfac.setVars(vars); r = pfac.copy(r); // hack to exchange the variables // System.out.println("r(z_) = " + r); AlgebraicNumberRing<C> afac = new AlgebraicNumberRing<C>(r, true); // since irreducible logger.debug("afac = " + afac.toScript()); AlgebraicNumber<C> a = afac.getGenerator(); // no: a = a.negate(); // System.out.println("a = " + a); // K(alpha)[x] GenPolynomialRing<AlgebraicNumber<C>> pafac = new GenPolynomialRing<AlgebraicNumber<C>>(afac, Pc.ring); // System.out.println("pafac = " + pafac.toScript()); // convert to K(alpha)[x] GenPolynomial<AlgebraicNumber<C>> Pa = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, P); // System.out.println("Pa = " + Pa); GenPolynomial<AlgebraicNumber<C>> Pap = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, Pp); // System.out.println("Pap = " + Pap); GenPolynomial<AlgebraicNumber<C>> Aa = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, A); // System.out.println("Aa = " + Aa); // A - a P' GenPolynomial<AlgebraicNumber<C>> Ap = Aa.subtract(Pap.multiply(a)); // System.out.println("Ap = " + Ap); if (aengine == null) { aengine = GCDFactory.<AlgebraicNumber<C>>getImplementation(afac); // System.out.println("aengine = " + aengine); } GenPolynomial<AlgebraicNumber<C>> Ga = aengine.baseGcd(Pa, Ap); // System.out.println("Ga = " + Ga); if (Ga.isConstant()) { // System.out.println("warning constant gcd ignored"); continue; } afactors.add(a); adenom.add(Ga); // quadratic case if (P.degree(0) == 2 && Ga.degree(0) == 1) { GenPolynomial<AlgebraicNumber<C>>[] qra = PolyUtil.<AlgebraicNumber<C>>basePseudoQuotientRemainder(Pa, Ga); GenPolynomial<AlgebraicNumber<C>> Qa = qra[0]; if (!qra[1].isZERO()) { throw new RuntimeException("remainder not zero"); } // System.out.println("Qa = " + Qa); afactors.add(a.negate()); adenom.add(Qa); } if (false && P.degree(0) == 3 && Ga.degree(0) == 1) { GenPolynomial<AlgebraicNumber<C>>[] qra = PolyUtil.<AlgebraicNumber<C>>basePseudoQuotientRemainder(Pa, Ga); GenPolynomial<AlgebraicNumber<C>> Qa = qra[0]; if (!qra[1].isZERO()) { throw new RuntimeException("remainder not zero"); } System.out.println("Qa3 = " + Qa); // afactors.add( a.negate() ); // adenom.add( Qa ); } } return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); }