/** * Takes a Cholesky decomposition from the Cholesky.cholesky method and a set of data simulated * using the information in that matrix. Written by Don Crimbchin. Modified June 8, Matt * Easterday: added a random # seed so that data can be recalculated with the same result in * Causality lab * * @param cholesky the result from cholesky above. * @param randomUtil a random number generator, if null the method will make a new generator for * each random number needed * @return an array the same length as the width or length (cholesky should have the same width * and length) containing a randomly generate data set. */ private double[] exogenousData(TetradMatrix cholesky, RandomUtil randomUtil) { // Step 1. Generate normal samples. double exoData[] = new double[cholesky.rows()]; for (int i = 0; i < exoData.length; i++) { exoData[i] = randomUtil.nextNormal(0, 1); } // Step 2. Multiply by cholesky to get correct covariance. double point[] = new double[exoData.length]; for (int i = 0; i < exoData.length; i++) { double sum = 0.0; for (int j = 0; j <= i; j++) { sum += cholesky.get(i, j) * exoData[j]; } point[i] = sum; } return point; }
/** * @param sampleSize The sample size of the desired data set. * @param latentDataSaved True if latent variables should be included in the data set. * @return This returns a standardized data set simulated from the model, using the reduced form * method. */ public DataSet simulateDataReducedForm(int sampleSize, boolean latentDataSaved) { int numVars = getVariableNodes().size(); // Calculate inv(I - edgeCoef) TetradMatrix edgeCoef = edgeCoef().copy().transpose(); // TetradMatrix iMinusB = TetradAlgebra.identity(edgeCoef.rows()); // iMinusB.assign(edgeCoef, Functions.minus); TetradMatrix iMinusB = TetradAlgebra.identity(edgeCoef.rows()).minus(edgeCoef); TetradMatrix inv = iMinusB.inverse(); // Pick error values e, for each calculate inv * e. TetradMatrix sim = new TetradMatrix(sampleSize, numVars); // Generate error data with the right variances and covariances, then override this // with error data for varaibles that have special distributions defined. Not ideal, // but not sure what else to do at the moment. It's better than not taking covariances // into account! TetradMatrix cholesky = MatrixUtils.choleskyC(errCovar(errorVariances())); for (int i = 0; i < sampleSize; i++) { TetradVector e = new TetradVector(exogenousData(cholesky, RandomUtil.getInstance())); TetradVector ePrime = inv.times(e); sim.assignRow(i, ePrime); // sim.viewRow(i).assign(ePrime); } DataSet fullDataSet = ColtDataSet.makeContinuousData(getVariableNodes(), sim); if (latentDataSaved) { return fullDataSet; } else { return DataUtils.restrictToMeasured(fullDataSet); } }
private void resolveOneEdgeMax(Graph graph, Node x, Node y, boolean strong, Graph oldGraph) { if (RandomUtil.getInstance().nextDouble() > 0.5) { Node temp = x; x = y; y = temp; } TetradLogger.getInstance().log("info", "\nEDGE " + x + " --- " + y); SortedMap<Double, String> scoreReports = new TreeMap<Double, String>(); List<Node> neighborsx = graph.getAdjacentNodes(x); neighborsx.remove(y); double max = Double.NEGATIVE_INFINITY; boolean left = false; boolean right = false; DepthChoiceGenerator genx = new DepthChoiceGenerator(neighborsx.size(), neighborsx.size()); int[] choicex; while ((choicex = genx.next()) != null) { List<Node> condxMinus = GraphUtils.asList(choicex, neighborsx); List<Node> condxPlus = new ArrayList<Node>(condxMinus); condxPlus.add(y); double xPlus = score(x, condxPlus); double xMinus = score(x, condxMinus); List<Node> neighborsy = graph.getAdjacentNodes(y); neighborsy.remove(x); DepthChoiceGenerator geny = new DepthChoiceGenerator(neighborsy.size(), neighborsy.size()); int[] choicey; while ((choicey = geny.next()) != null) { List<Node> condyMinus = GraphUtils.asList(choicey, neighborsy); // List<Node> parentsY = oldGraph.getParents(y); // parentsY.remove(x); // if (!condyMinus.containsAll(parentsY)) { // continue; // } List<Node> condyPlus = new ArrayList<Node>(condyMinus); condyPlus.add(x); double yPlus = score(y, condyPlus); double yMinus = score(y, condyMinus); // Checking them all at once is expensive but avoids lexical ordering problems in the // algorithm. if (normal(y, condyPlus) || normal(x, condxMinus) || normal(x, condxPlus) || normal(y, condyMinus)) { continue; } double delta = 0.0; if (strong) { if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(xPlus, yMinus); if (yPlus <= yMinus + delta && xMinus <= xPlus + delta) { StringBuilder builder = new StringBuilder(); builder.append("\nStrong " + y + "->" + x + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = true; right = false; } } else { StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); if (yMinus <= yPlus + delta && xPlus <= xMinus + delta) { StringBuilder builder = new StringBuilder(); builder.append("\nStrong " + x + "->" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = false; right = true; } } else { StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } else { if (yPlus <= xPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(xPlus, yMinus); StringBuilder builder = new StringBuilder(); builder.append("\nWeak " + y + "->" + x + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = true; right = false; } } else if (xPlus <= yPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nWeak " + x + "->" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); if (score > max) { max = score; left = false; right = true; } } else if (yPlus <= xPlus + delta && yMinus <= xMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } else if (xPlus <= yPlus + delta && xMinus <= yMinus + delta) { double score = combinedScore(yPlus, xMinus); StringBuilder builder = new StringBuilder(); builder.append("\nNo directed edge " + x + "--" + y + " " + score); builder.append("\n Parents(" + x + ") = " + condxMinus); builder.append("\n Parents(" + y + ") = " + condyMinus); scoreReports.put(-score, builder.toString()); } } } } for (double score : scoreReports.keySet()) { TetradLogger.getInstance().log("info", scoreReports.get(score)); } graph.removeEdges(x, y); if (left) { graph.addDirectedEdge(y, x); } if (right) { graph.addDirectedEdge(x, y); } if (!graph.isAdjacentTo(x, y)) { graph.addUndirectedEdge(x, y); } }