/* A builds PCFG using the observed counts of binary and unary * productions in the training trees to estimate the probabilities * for those rules. */ public Grammar(List<Tree<String>> trainTrees) { Counter<UnaryRule> unaryRuleCounter = new Counter<UnaryRule>(); Counter<BinaryRule> binaryRuleCounter = new Counter<BinaryRule>(); Counter<String> symbolCounter = new Counter<String>(); for (Tree<String> trainTree : trainTrees) { tallyTree(trainTree, symbolCounter, unaryRuleCounter, binaryRuleCounter); } for (UnaryRule unaryRule : unaryRuleCounter.keySet()) { double unaryProbability = unaryRuleCounter.getCount(unaryRule) / symbolCounter.getCount(unaryRule.getParent()); unaryRule.setScore(unaryProbability); addUnary(unaryRule); } for (BinaryRule binaryRule : binaryRuleCounter.keySet()) { double binaryProbability = binaryRuleCounter.getCount(binaryRule) / symbolCounter.getCount(binaryRule.getParent()); binaryRule.setScore(binaryProbability); addBinary(binaryRule); } }
public Tree<String> getBestParseOld(List<String> sentence) { // TODO: This implements the CKY algorithm CounterMap<String, String> parseScores = new CounterMap<String, String>(); System.out.println(sentence.toString()); // First deal with the lexicons int index = 0; int span = 1; // All spans are 1 at the lexicon level for (String word : sentence) { for (String tag : lexicon.getAllTags()) { double score = lexicon.scoreTagging(word, tag); if (score >= 0.0) { // This lexicon may generate this word // We use a counter map in order to store the scores for this sentence parse. parseScores.setCount(index + " " + (index + span), tag, score); } } index = index + 1; } // handle unary rules now HashMap<String, Triplet<Integer, String, String>> backHash = new HashMap< String, Triplet<Integer, String, String>>(); // hashmap to store back propation // System.out.println("Lexicons found"); Boolean added = true; while (added) { added = false; for (index = 0; index < sentence.size(); index++) { // For each index+ span pair, get the counter. Counter<String> count = parseScores.getCounter(index + " " + (index + span)); PriorityQueue<String> countAsPQ = count.asPriorityQueue(); while (countAsPQ.hasNext()) { String entry = countAsPQ.next(); // System.out.println("I am fine here!!"); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { // These are the unary rules which might give rise to the above preterminal double prob = rule.getScore() * parseScores.getCount(index + " " + (index + span), entry); if (prob > parseScores.getCount(index + " " + (index + span), rule.parent)) { parseScores.setCount(index + " " + (index + span), rule.parent, prob); backHash.put( index + " " + (index + span) + " " + rule.parent, new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } } // System.out.println("Lexicon unaries dealt with"); // Now work with the grammar to produce higher level probabilities for (span = 2; span <= sentence.size(); span++) { for (int begin = 0; begin <= (sentence.size() - span); begin++) { int end = begin + span; for (int split = begin + 1; split <= end - 1; split++) { Counter<String> countLeft = parseScores.getCounter(begin + " " + split); Counter<String> countRight = parseScores.getCounter(split + " " + end); // List<BinaryRule> leftRules= new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> leftMap = new HashMap<Integer, BinaryRule>(); // List<BinaryRule> rightRules=new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> rightMap = new HashMap<Integer, BinaryRule>(); for (String entry : countLeft.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByLeftChild(entry)) { if (!leftMap.containsKey(rule.hashCode())) { leftMap.put(rule.hashCode(), rule); } } } for (String entry : countRight.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByRightChild(entry)) { if (!rightMap.containsKey(rule.hashCode())) { rightMap.put(rule.hashCode(), rule); } } } // System.out.println("About to enter the rules loops"); for (Integer ruleHash : leftMap.keySet()) { if (rightMap.containsKey(ruleHash)) { BinaryRule ruleRight = rightMap.get(ruleHash); double prob = ruleRight.getScore() * parseScores.getCount(begin + " " + split, ruleRight.leftChild) * parseScores.getCount(split + " " + end, ruleRight.rightChild); // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); if (prob > parseScores.getCount(begin + " " + end, ruleRight.parent)) { // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); // System.out.println("parentrule :"+ ruleRight.getParent()); parseScores.setCount(begin + " " + end, ruleRight.getParent(), prob); backHash.put( begin + " " + end + " " + ruleRight.parent, new Triplet<Integer, String, String>( split, ruleRight.leftChild, ruleRight.rightChild)); } } } // System.out.println("Exited rules loop"); } // System.out.println("Grammar found for " + begin + " "+ end); // Now handle unary rules added = true; while (added) { added = false; Counter<String> count = parseScores.getCounter(begin + " " + end); PriorityQueue<String> countAsPriorityQueue = count.asPriorityQueue(); while (countAsPriorityQueue.hasNext()) { String entry = countAsPriorityQueue.next(); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { double prob = rule.getScore() * parseScores.getCount(begin + " " + (end), entry); if (prob > parseScores.getCount(begin + " " + (end), rule.parent)) { parseScores.setCount(begin + " " + (end), rule.parent, prob); backHash.put( begin + " " + (end) + " " + rule.parent, new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } // System.out.println("Unaries dealt for " + begin + " "+ end); } } // Create and return the parse tree Tree<String> parseTree = new Tree<String>("null"); // System.out.println(parseScores.getCounter(0+" "+sentence.size()).toString()); String parent = parseScores.getCounter(0 + " " + sentence.size()).argMax(); if (parent == null) { System.out.println(parseScores.getCounter(0 + " " + sentence.size()).toString()); System.out.println("THIS IS WEIRD"); } parent = "ROOT"; parseTree = getParseTreeOld(sentence, backHash, 0, sentence.size(), parent); // System.out.println("PARSE SCORES"); // System.out.println(parseScores.toString()); // System.out.println("BACK HASH"); // System.out.println(backHash.toString()); // parseTree = addRoot(parseTree); // System.out.println(parseTree.toString()); // return parseTree; return TreeAnnotations.unAnnotateTree(parseTree); }
public Tree<String> getBestParse(List<String> sentence) { // This implements the CKY algorithm int nEntries = sentence.size(); // hashmap to store back rules HashMap<Triplet<Integer, Integer, String>, Triplet<Integer, String, String>> backHash = new HashMap<Triplet<Integer, Integer, String>, Triplet<Integer, String, String>>(); // more efficient access with arrays, but must cast each time :( @SuppressWarnings("unchecked") Counter<String>[][] parseScores = (Counter<String>[][]) (new Counter[nEntries][nEntries]); for (int i = 0; i < nEntries; i++) { for (int j = 0; j < nEntries; j++) { parseScores[i][j] = new Counter<String>(); } } System.out.println(sentence.toString()); // First deal with the lexicons int index = 0; int span = 1; // All spans are 1 at the lexicon level for (String word : sentence) { for (String tag : lexicon.getAllTags()) { double score = lexicon.scoreTagging(word, tag); if (score >= 0.0) { // This lexicon may generate this word // We use a counter map in order to store the scores for this sentence parse. parseScores[index][index + span - 1].setCount(tag, score); } } index = index + 1; } // handle unary rules now // System.out.println("Lexicons found"); boolean added = true; while (added) { added = false; for (index = 0; index < sentence.size(); index++) { // For each index+ span pair, get the counter. Counter<String> count = parseScores[index][index + span - 1]; PriorityQueue<String> countAsPQ = count.asPriorityQueue(); while (countAsPQ.hasNext()) { String entry = countAsPQ.next(); // System.out.println("I am fine here!!"); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { // These are the unary rules which might give rise to the above preterminal double prob = rule.getScore() * parseScores[index][index + span - 1].getCount(entry); if (prob > parseScores[index][index + span - 1].getCount(rule.parent)) { parseScores[index][index + span - 1].setCount(rule.parent, prob); backHash.put( new Triplet<Integer, Integer, String>(index, index + span, rule.parent), new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } } // System.out.println("Lexicon unaries dealt with"); // Now work with the grammar to produce higher level probabilities for (span = 2; span <= sentence.size(); span++) { for (int begin = 0; begin <= (sentence.size() - span); begin++) { int end = begin + span; for (int split = begin + 1; split <= end - 1; split++) { Counter<String> countLeft = parseScores[begin][split - 1]; Counter<String> countRight = parseScores[split][end - 1]; // List<BinaryRule> leftRules= new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> leftMap = new HashMap<Integer, BinaryRule>(); // List<BinaryRule> rightRules=new ArrayList<BinaryRule>(); HashMap<Integer, BinaryRule> rightMap = new HashMap<Integer, BinaryRule>(); for (String entry : countLeft.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByLeftChild(entry)) { if (!leftMap.containsKey(rule.hashCode())) { leftMap.put(rule.hashCode(), rule); } } } for (String entry : countRight.keySet()) { for (BinaryRule rule : grammar.getBinaryRulesByRightChild(entry)) { if (!rightMap.containsKey(rule.hashCode())) { rightMap.put(rule.hashCode(), rule); } } } // System.out.println("About to enter the rules loops"); for (Integer ruleHash : leftMap.keySet()) { if (rightMap.containsKey(ruleHash)) { BinaryRule ruleRight = rightMap.get(ruleHash); double prob = ruleRight.getScore() * parseScores[begin][split - 1].getCount(ruleRight.leftChild) * parseScores[split][end - 1].getCount(ruleRight.rightChild); // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); if (prob > parseScores[begin][end - 1].getCount(ruleRight.parent)) { // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob); // System.out.println("parentrule :"+ ruleRight.getParent()); parseScores[begin][end - 1].setCount(ruleRight.getParent(), prob); backHash.put( new Triplet<Integer, Integer, String>(begin, end, ruleRight.parent), new Triplet<Integer, String, String>( split, ruleRight.leftChild, ruleRight.rightChild)); } } } // System.out.println("Exited rules loop"); } // System.out.println("Grammar found for " + begin + " "+ end); // Now handle unary rules added = true; while (added) { added = false; Counter<String> count = parseScores[begin][end - 1]; PriorityQueue<String> countAsPriorityQueue = count.asPriorityQueue(); while (countAsPriorityQueue.hasNext()) { String entry = countAsPriorityQueue.next(); List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry); for (UnaryRule rule : unaryRules) { double prob = rule.getScore() * parseScores[begin][end - 1].getCount(entry); if (prob > parseScores[begin][end - 1].getCount(rule.parent)) { parseScores[begin][end - 1].setCount(rule.parent, prob); backHash.put( new Triplet<Integer, Integer, String>(begin, end, rule.parent), new Triplet<Integer, String, String>(-1, entry, null)); added = true; } } } } // System.out.println("Unaries dealt for " + begin + " "+ end); } } // Create and return the parse tree Tree<String> parseTree = new Tree<String>("null"); // System.out.println(parseScores.getCounter(0+" "+sentence.size()).toString()); // Pick the argmax String parent = parseScores[0][nEntries - 1].argMax(); // Or pick root. This second one is preferred since sentences are meant to have ROOT as their // root node. parent = "ROOT"; parseTree = getParseTree(sentence, backHash, 0, sentence.size(), parent); // System.out.println("PARSE SCORES"); // System.out.println(parseScores.toString()); // System.out.println("BACK HASH"); // System.out.println(backHash.toString()); // parseTree = addRoot(parseTree); // System.out.println(parseTree.toString()); // return parseTree; return TreeAnnotations.unAnnotateTree(parseTree); }