public Vec optimizeColumn(final FuncC1 func, final Vec codingColumn) {
    final Vec mu = new ArrayVec(codingColumn.dim());
    for (int i = 0; i < mu.dim(); i++) {
      final double code = codingColumn.get(i);
      if (code == 1.0) mu.set(i, 1.0);
      else if (code == -1.0) mu.set(i, 0.0);
      else mu.set(i, 0.5);
    }

    double error = 100500;
    while (error > 1e-3) {
      final Vec muPrev = VecTools.copy(mu);
      final Vec gradient = func.gradient(mu);
      VecTools.incscale(mu, gradient, -step);

      for (int i = 0; i < mu.dim(); i++) {
        final double code = codingColumn.get(i);
        final double val = mu.get(i);
        if (code == 1.0 || val > 1.0) {
          mu.set(i, 1.0);
        } else if (code == -1.0 || val < 0) {
          mu.set(i, 0);
        }
      }
      System.out.println(mu);
      error = VecTools.norm(VecTools.subtract(muPrev, mu));
    }

    return new ArrayVec(codingColumn.dim());
  }
    @Override
    public Vec gradient(final Vec mu) {
      final Vec grad = new ArrayVec(mu.dim());
      for (int k = 0; k < grad.dim(); k++) {
        final TIntList idxs = classesIdxs.get(k);
        double val = 0.0;
        for (final TIntIterator listIter = idxs.iterator(); listIter.hasNext(); ) {
          final Vec x = ds.data().row(listIter.next());
          final double trans = binClassifier.value(x);
          final double sigmoid = MathTools.sigmoid(trans);
          val -= (2 * sigmoid - 1) / (mu.get(k) * sigmoid + (1 - mu.get(k)) * (1 - sigmoid));
          grad.set(k, val);
        }
      }

      final double norm = VecTools.norm(grad);
      VecTools.scale(grad, 1 / norm);

      for (int k = 0; k < grad.dim(); k++) {
        final double val = VecTools.multiply(laplacian.row(k), mu);
        grad.adjust(k, val);
      }
      return grad;
    }