@Test public void testRungeKutta() { final RungeKuttaIntegrator1D integrator = new RungeKuttaIntegrator1D(); final double lower = -1; final double upper = 2; assertEquals( F1.evaluate(upper) - F1.evaluate(lower), integrator.integrate(DF1, lower, upper), EPS); }
@Test public void testGaussJacobi() { final double upper = 12; final double lower = -1; final Integrator1D<Double, Double> integrator = new GaussJacobiQuadratureIntegrator1D(7); assertEquals( F1.evaluate(upper) - F1.evaluate(lower), integrator.integrate(DF1, lower, upper), EPS); }
@Test public void testGaussLegendre() { double upper = 2; double lower = -6; final Integrator1D<Double, Double> integrator = new GaussLegendreQuadratureIntegrator1D(6); assertEquals( F1.evaluate(upper) - F1.evaluate(lower), integrator.integrate(DF1, lower, upper), EPS); lower = -0.56; upper = 1.4; assertEquals( F1.evaluate(upper) - F1.evaluate(lower), integrator.integrate(DF1, lower, upper), EPS); }
@Test public void testMixed() { final DoubleMatrix2D jacobian = MIXED.evaluate(XNM); assertEquals(N + M, jacobian.getNumberOfRows()); assertEquals(N + M, jacobian.getNumberOfColumns()); for (int i = 0; i < N; i++) { for (int j = 0; j < N + M; j++) { if (i == j) { assertTrue(jacobian.getEntry(i, j) > 0.0); } else if (i == (j + 1)) { assertTrue(jacobian.getEntry(i, j) < 0.0); } else { assertEquals(0.0, jacobian.getEntry(i, j), 0.0); } } } for (int i = N; i < N + M; i++) { for (int j = 0; j < N + M; j++) { if (i == j) { assertEquals(Math.exp(XNM.getEntry(i) * (i - N)), jacobian.getEntry(i, i), 1e-8); } else { assertEquals(0.0, jacobian.getEntry(i, j), 0.0); } } } }
@Test public void test() { double x; final double eps = 1e-5; for (int i = 0; i < 100; i++) { x = RANDOM.nextDouble(); assertEquals(x, F.evaluate(T.getCDF(x)), eps); } }
@Override public DoubleMatrix2D getInitializedMatrix( final Function1D<DoubleMatrix1D, DoubleMatrix2D> jacobianFunction, final DoubleMatrix1D x) { Validate.notNull(jacobianFunction); Validate.notNull(x); final DoubleMatrix2D estimate = jacobianFunction.evaluate(x); final DecompositionResult decompositionResult = _decomposition.evaluate(estimate); return decompositionResult.solve( DoubleMatrixUtils.getIdentityMatrix2D(x.getNumberOfElements())); }
@Test public void test() { DoubleMatrix2D m1 = ESTIMATE.getInitializedMatrix(J, X); DoubleMatrix2D m2 = J.evaluate(X); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { assertEquals(m1.getEntry(i, j), m2.getEntry(i, j), 1e-9); } } }
@Test public void testCashOnly() { final DoubleMatrix2D jacobian = CASH_ONLY.evaluate(XM); assertEquals(M, jacobian.getNumberOfRows()); assertEquals(M, jacobian.getNumberOfColumns()); for (int i = 0; i < M; i++) { for (int j = 0; j < M; j++) { if (i == j) { assertEquals(Math.exp(XM.getEntry(i) * i), jacobian.getEntry(i, i), 1e-8); } else { assertEquals(0.0, jacobian.getEntry(i, j), 0); } } } }
/** * @param x The array of data, not null, must contain at least three data points * @return The sample skewness */ @Override public Double evaluate(final double[] x) { Validate.notNull(x, "x"); Validate.isTrue(x.length >= 3, "Need at least three points to calculate sample skewness"); double sum = 0; double variance = 0; final double mean = MEAN.evaluate(x); for (final Double d : x) { final double diff = d - mean; variance += diff * diff; sum += diff * diff * diff; } final int n = x.length; variance /= n - 1; return Math.sqrt(n - 1.) * sum / (Math.pow(variance, 1.5) * Math.sqrt(n) * (n - 2)); }
/** {@inheritDoc} */ @Override public Double integrate( final Function1D<Double, Double> function, final Double lower, final Double upper) { Validate.notNull(function); Validate.notNull(lower); Validate.notNull(upper); final Function1D<Double, Double> integral = getIntegralFunction(function, lower, upper); final GaussianQuadratureData quadrature = _generator.generate(_n); final double[] abscissas = quadrature.getAbscissas(); final int n = abscissas.length; final double[] weights = quadrature.getWeights(); double sum = 0; for (int i = 0; i < n; i++) { sum += integral.evaluate(abscissas[i]) * weights[i]; } return sum; }
@Test public void testFRAOnly() { final DoubleMatrix2D jacobian = FRA_ONLY.evaluate(XN); assertEquals(N, jacobian.getNumberOfRows()); assertEquals(N, jacobian.getNumberOfColumns()); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (i == j) { assertTrue(jacobian.getEntry(i, j) > 0.0); } else if (i == (j + 1)) { assertTrue(jacobian.getEntry(i, j) < 0.0); } else { assertEquals(0.0, jacobian.getEntry(i, j), 0.0); } } } }
@Override public LeastSquareResultsWithTransform getFitResult( final EuropeanVanillaOption[] options, final BlackFunctionData[] data, final double[] errors, final double[] initialFitParameters, final BitSet fixed) { testData(options, data, errors, initialFitParameters, fixed, N_PARAMETERS); final int n = options.length; final double forward = data[0].getForward(); final double maturity = options[0].getTimeToExpiry(); for (int i = 1; i < n; i++) { Validate.isTrue( CompareUtils.closeEquals(options[i].getTimeToExpiry(), maturity), "All options must have the same maturity " + maturity + "; have one with maturity " + options[i].getTimeToExpiry()); } final UncoupledParameterTransforms transforms = new UncoupledParameterTransforms( new DoubleMatrix1D(initialFitParameters), TRANSFORMS, fixed); final Function1D<DoubleMatrix1D, Double> function = new Function1D<DoubleMatrix1D, Double>() { @SuppressWarnings("synthetic-access") @Override public Double evaluate(final DoubleMatrix1D fp) { final DoubleMatrix1D mp = transforms.inverseTransform(fp); final double alpha = mp.getEntry(0); final double beta = mp.getEntry(1); final double nu = mp.getEntry(2); final double rho = mp.getEntry(3); double chiSqr = 0; final SABRFormulaData sabrFormulaData = new SABRFormulaData(alpha, beta, rho, nu); for (int i = 0; i < n; i++) { chiSqr += FunctionUtils.square( (data[i].getBlackVolatility() - _formula .getVolatilityFunction(options[i], forward) .evaluate(sabrFormulaData)) / errors[i]); } return chiSqr; } }; final ScalarMinimizer lineMinimizer = new BrentMinimizer1D(); final ConjugateDirectionVectorMinimizer minimzer = new ConjugateDirectionVectorMinimizer(lineMinimizer, 1e-6, 10000); final DoubleMatrix1D fp = transforms.transform(new DoubleMatrix1D(initialFitParameters)); final DoubleMatrix1D minPos = minimzer.minimize(function, fp); final double chiSquare = function.evaluate(minPos); final DoubleMatrix1D res = transforms.inverseTransform(minPos); return new LeastSquareResultsWithTransform( new LeastSquareResults( chiSquare, res, new DoubleMatrix2D(new double[N_PARAMETERS][N_PARAMETERS])), transforms); // return new LeastSquareResults(chiSquare, res, new DoubleMatrix2D(new // double[N_PARAMETERS][N_PARAMETERS])); }
@Test(expectedExceptions = IllegalArgumentException.class) public void testNegative() { F.evaluate(-4.); }
@Test(expectedExceptions = IllegalArgumentException.class) public void testNull() { F.evaluate((Double) null); }
@Test(expectedExceptions = IllegalArgumentException.class) public void testWrongNumberOfElements() { CASH_ONLY.evaluate(XN); }
@Test(expectedExceptions = IllegalArgumentException.class) public void testNullVector() { CASH_ONLY.evaluate((DoubleMatrix1D) null); }