Example #1
0
 /**
  * Train the neural network to predict an output given some input.
  *
  * @param input The input to the neural network.
  * @param output The target output for the given input.
  * @param learningRate The rate at which the neural network learns. This is normally 0.01.
  * @return The error of the network as an mean cross entropy.
  */
 public double train(Matrix input, Matrix output, double learningRate) {
   double totalError = 0;
   if (input.getNumRows() == output.getNumRows()) {
     for (int i = 0; i < input.getNumRows(); i++) {
       Matrix inputRow = new Matrix(new double[][] {input.getRow(i)}).transpose();
       Matrix outputRow = new Matrix(new double[][] {output.getRow(i)}).transpose();
       Matrix netOutput = this.predict(inputRow);
       // Output layer
       Matrix previousDelta =
           outputRow
               .subtract(netOutput)
               .multiply(-1)
               .multiply(
                   layers
                       .get(layers.size() - 1)
                       .applyFunctionDerivative(layers.get(layers.size() - 1).inputMatrix));
       Matrix change =
           previousDelta
               .dot(layers.get(layers.size() - 2).outputMatrix.transpose())
               .add(layers.get(layers.size() - 1).weightMatrix.multiply(lambda));
       layers.get(layers.size() - 1).weightMatrix =
           layers.get(layers.size() - 1).weightMatrix.subtract(change.multiply(learningRate));
       // Hidden layers
       for (int l = layers.size() - 2; l > 0; l--) {
         previousDelta =
             layers
                 .get(l + 1)
                 .weightMatrix
                 .transpose()
                 .dot(previousDelta)
                 .multiply(layers.get(l).applyFunctionDerivative(layers.get(l).inputMatrix));
         change =
             previousDelta
                 .dot(layers.get(l - 1).outputMatrix.transpose())
                 .add(layers.get(l).weightMatrix.multiply(lambda));
         layers.get(l).weightMatrix =
             layers.get(l).weightMatrix.subtract(change.multiply(learningRate));
       }
       double error = squaredError(inputRow, outputRow);
       totalError += error;
     }
   }
   return totalError;
 }
Example #2
0
 /**
  * Give a prediction based on some input.
  *
  * @param input The input to the neural network which is equal in size to the number of input
  *     neurons.
  * @return The output of the neural network.
  */
 public Matrix predict(Matrix input) {
   if (input.getNumRows() != layers.get(0).getLayerSize().getInputSize()) {
     throw new InvalidParameterException(
         "Input size did not match the input size of the first layer");
   }
   Matrix modInput = (Matrix) input.clone();
   for (Layer l : layers) {
     modInput = l.activate(modInput);
   }
   return modInput;
 }
Example #3
0
 /**
  * Applies the activation function to the processed input.
  *
  * @param input The input to the activation function.
  * @return The output of the activation function.
  */
 private Matrix applyFunction(Matrix input) {
   Matrix activated = (Matrix) input.clone();
   for (int row = 0; row < input.getNumRows(); row++)
     for (int col = 0; col < input.getNumCols(); col++)
       activated.set(row, col, function.activate(input.get(row, col)));
   if (function instanceof Softmax) {
     double sum = activated.sum();
     if (sum != 0) activated = activated.multiply(1 / sum);
   }
   return activated;
 }