public boolean resolveConflict(IIndex writeSet, ITuple txTuple, ITuple currentTuple) throws Exception { // The key must be the same for both tuples. assertEquals(txTuple.getKey(), currentTuple.getKey()); // the key for the conflicting writes. final byte[] key = txTuple.getKey(); assertEquals("key", expectedKey, key); writeSet.insert(key, resolvedValue); return true; }
/** * Creates a {@link Justification}, writes it on the store using {@link * RDFJoinNexus#newInsertBuffer(IMutableRelation)}, verifies that we can read it back from the * store, and then retracts the justified statement and verifies that the justification was also * retracted. */ public void test_writeReadRetract() { final Properties properties = super.getProperties(); // override the default axiom model. properties.setProperty( com.bigdata.rdf.store.AbstractTripleStore.Options.AXIOMS_CLASS, NoAxioms.class.getName()); final AbstractTripleStore store = getStore(properties); try { if (!store.isJustify()) { log.warn("Test skipped - justifications not enabled"); } /* * the explicit statement that is the support for the rule. */ final IV U = store.addTerm(new URIImpl("http://www.bigdata.com/U")); final IV A = store.addTerm(new URIImpl("http://www.bigdata.com/A")); final IV Y = store.addTerm(new URIImpl("http://www.bigdata.com/Y")); store.addStatements( new SPO[] { // new SPO(U, A, Y, StatementEnum.Explicit) // }, // 1); assertTrue(store.hasStatement(U, A, Y)); assertEquals(1, store.getStatementCount()); final InferenceEngine inf = store.getInferenceEngine(); final Vocabulary vocab = store.getVocabulary(); // the rule. final Rule rule = new RuleRdf01(store.getSPORelation().getNamespace(), vocab); final IJoinNexus joinNexus = store .newJoinNexusFactory( RuleContextEnum.DatabaseAtOnceClosure, ActionEnum.Insert, IJoinNexus.ALL, null /* filter */) .newInstance(store.getIndexManager()); /* * The buffer that accepts solutions and causes them to be written * onto the statement indices and the justifications index. */ final IBuffer<ISolution[]> insertBuffer = joinNexus.newInsertBuffer(store.getSPORelation()); // the expected justification (setup and verified below). final Justification jst; // the expected entailment. final SPO expectedEntailment = new SPO( // A, vocab.get(RDF.TYPE), vocab.get(RDF.PROPERTY), StatementEnum.Inferred); { final IBindingSet bindingSet = joinNexus.newBindingSet(rule); /* * Note: rdfs1 is implemented using a distinct term scan. This * has the effect of leaving the variables that do not appear in * the head of the rule unbound. Therefore we DO NOT bind those * variables here in the test case and they will be represented * as ZERO (0L) in the justifications index and interpreted as * wildcards. */ // bindingSet.set(Var.var("u"), new Constant<IV>(U)); bindingSet.set(Var.var("a"), new Constant<IV>(A)); // bindingSet.set(Var.var("y"), new Constant<IV>(Y)); final ISolution solution = new Solution(joinNexus, rule, bindingSet); /* * Verify the justification that will be built from that * solution. */ { jst = new Justification(solution); /* * Verify the bindings on the head of the rule as * represented by the justification. */ assertEquals(expectedEntailment, jst.getHead()); /* * Verify the bindings on the tail of the rule as * represented by the justification. Again, note that the * variables that do not appear in the head of the rule are * left unbound for rdfs1 as a side-effect of evaluation * using a distinct term scan. */ final SPO[] expectedTail = new SPO[] { // new SPO(NULL, A, NULL, StatementEnum.Inferred) // }; if (!Arrays.equals(expectedTail, jst.getTail())) { fail("Expected: " + Arrays.toString(expectedTail) + ", but actual: " + jst); } } // insert solution into the buffer. insertBuffer.add(new ISolution[] {solution}); } // SPOAssertionBuffer buf = new SPOAssertionBuffer(store, store, // null/* filter */, 100/* capacity */, true/* justified */); // // assertTrue(buf.add(head, jst)); // no justifications before hand. assertEquals(0L, store.getSPORelation().getJustificationIndex().rangeCount()); // flush the buffer. assertEquals(1L, insertBuffer.flush()); // one justification afterwards. assertEquals(1L, store.getSPORelation().getJustificationIndex().rangeCount()); /* * verify read back from the index. */ { final ITupleIterator<Justification> itr = store.getSPORelation().getJustificationIndex().rangeIterator(); while (itr.hasNext()) { final ITuple<Justification> tuple = itr.next(); // de-serialize the justification from the key. final Justification tmp = tuple.getObject(); // verify the same. assertEquals(jst, tmp); // no more justifications in the index. assertFalse(itr.hasNext()); } } /* * test iterator with a single justification. */ { final FullyBufferedJustificationIterator itr = new FullyBufferedJustificationIterator(store, expectedEntailment); assertTrue(itr.hasNext()); final Justification tmp = itr.next(); assertEquals(jst, tmp); } // an empty focusStore. final TempTripleStore focusStore = new TempTripleStore(store.getIndexManager().getTempStore(), store.getProperties(), store); try { /* * The inference (A rdf:type rdf:property) is grounded by the * explicit statement (U A Y). */ assertTrue( Justification.isGrounded( inf, focusStore, store, expectedEntailment, false /* testHead */, true /* testFocusStore */, new VisitedSPOSet(focusStore.getIndexManager()))); // add the statement (U A Y) to the focusStore. focusStore.addStatements( new SPO[] { // new SPO(U, A, Y, StatementEnum.Explicit) // }, // 1); /* * The inference is no longer grounded since we have declared * that we are also retracting its grounds. */ assertFalse( Justification.isGrounded( inf, focusStore, store, expectedEntailment, false /* testHead */, true /* testFocusStore */, new VisitedSPOSet(focusStore.getIndexManager()))); } finally { /* * Destroy the temp kb, but not the backing TemporaryStore. That * will be destroyed when we destroy the IndexManager associated * with the main store (below). */ focusStore.destroy(); } /* * remove the justified statements. */ assertEquals( 1L, store .getAccessPath(expectedEntailment.s, expectedEntailment.p, expectedEntailment.o) .removeAll()); /* * verify that the justification for that statement is gone. */ { final ITupleIterator<?> itr = store.getSPORelation().getJustificationIndex().rangeIterator(); assertFalse(itr.hasNext()); } } finally { store.__tearDownUnitTest(); } }
/** * Set the direction of iterator progress. Clears {@link #sourceTuple} iff the current direction * is different from the new direction and is otherwise a NOP. * * <p>Note: Care is required for sequences such as * * <pre> * ITuple t1 = next(); * * ITuple t2 = prior(); * </pre> * * <p>to visit the same tuple for {@link #next()} and {@link #prior()}. * * @param forward <code>true</code> iff the new direction of iterator progress is forward using * {@link #hasNext()} and {@link #next()}. */ private void setForwardDirection(boolean forward) { if (this.forward != forward) { if (INFO) log.info("Changing direction: forward=" + forward); /* * This is the last key visited -or- null iff nothing has been * visited. */ final byte[] lastKeyVisited; if (lastVisited == -1) { lastKeyVisited = null; } else { // lastKeyVisited = ((ITupleCursor2<E>) sourceIterator[lastVisited]) // .tuple().getKey(); lastKeyVisited = lastKeyBuffer.getKey(); if (INFO) log.info("key for last tuple visited=" + BytesUtil.toString(lastKeyVisited)); } for (int i = 0; i < n; i++) { /* * Recover the _current_ tuple for each source iterator. */ // current tuple for the source iterator. ITuple<E> tuple = ((ITupleCursor2<E>) sourceIterator[i]).tuple(); if (INFO) log.info("sourceIterator[" + i + "]=" + tuple); if (lastKeyVisited != null) { /* * When we are changing to [forward == true] (visiting the * next tuples in the index order), then we advance the * source iterator zero or more tuples until it is * positioned GT the lastVisitedKey. * * When we are changing to [forward == false] (visiting the * prior tuples in the index order), then we backup the * source iterator zero or more tuples until it is * positioned LT the lastVisitedKey. */ while (tuple != null) { final int ret = BytesUtil.compareBytes( // tuple.getKey(), // lastKeyVisited // ); final boolean ok = forward ? ret > 0 : ret < 0; if (ok) break; /* * If the source iterator is currently positioned on the * same key as the last tuple that we visited then we * need to move it off of that key - either to the * previous or the next visitable tuple depending on the * new direction for the iterator. */ if (forward) { if (sourceIterator[i].hasNext()) { // next tuple tuple = sourceIterator[i].next(); } else { // exhausted in this direction. tuple = null; } } else { if (sourceIterator[i].hasPrior()) { // prior tuple tuple = sourceIterator[i].prior(); } else { // exhausted in this direction. tuple = null; } } if (INFO) log.info( "skipping tuple: source=" + i + ", direction=" + (forward ? "next" : "prior") + ", newTuple=" + tuple); } } sourceTuple[i] = tuple; // as assigned to source[i]. if (INFO) log.info("sourceTuple [" + i + "]=" + sourceTuple[i]); } // set the new iterator direction. this.forward = forward; // clear current since the old lookahead choice is no longer valid. this.current = -1; } }