/** * Classifies an instance w.r.t. the partitions found. It applies a naive min-distance algorithm. * * @param instance the instance to classify * @return the cluster that contains the nearest point to the instance */ public int clusterInstance(Instance instance) throws java.lang.Exception { DoubleMatrix1D u = DoubleFactory1D.dense.make(instance.toDoubleArray()); double min_dist = Double.POSITIVE_INFINITY; int c = -1; for (int i = 0; i < v.rows(); i++) { double dist = distnorm2(u, v.viewRow(i)); if (dist < min_dist) { c = cluster[i]; min_dist = dist; } } return c; }
public void buildClusterer(ArrayList<String> seqDB, double[][] sm) { seqList = seqDB; this.setSimMatrix(sm); Attribute seqString = new Attribute("sequence", (FastVector) null); FastVector attrInfo = new FastVector(); attrInfo.addElement(seqString); Instances data = new Instances("data", attrInfo, 0); for (int i = 0; i < seqList.size(); i++) { Instance currentInst = new Instance(1); currentInst.setDataset(data); currentInst.setValue(0, seqList.get(i)); data.add(currentInst); } try { buildClusterer(data); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }