/** * Extracts the parameters for the subModels from the parameters vector returned by * DTOM.makeParameters(...) Basically the same as BNet.makeSubParamList(...), but for input as * follows - [ ( [intraslice parents], [temporal parents], (submodel,subparams) ) ] */ protected static Value[] makeSubParamListDBN(Value.Vector params) { Value[] value = new Value[params.length()]; for (int i = 0; i < value.length; i++) { Value.Structured temp = (Value.Structured) params.elt(i); // value[i] = ((Value.Structured)(temp.cmpnt(2))).cmpnt(1); value[i] = ((Value.Structured) (temp.cmpnt(3))) .cmpnt(1); // One extra component in input vs TOM params } return value; }
/** * Extracts the subModels from the parameters vector returned by DTOM.makeParameters(...). * Basically the same as BNet.makeSubModelList(...), but for input as follows - [ ( [intraslice * parents], [temporal parents], (submodel,subparams) ) ] */ protected static Value.Model[] makeSubModelListDBN(Value.Vector params) { Value.Model[] model = new Value.Model[params.length()]; for (int i = 0; i < model.length; i++) { Value.Structured temp = (Value.Structured) params.elt(i); // model[i] = (Value.Model)((Value.Structured)(temp.cmpnt(2))).cmpnt(0); model[i] = (Value.Model) ((Value.Structured) (temp.cmpnt(3))) .cmpnt(0); // One extra component in input vs TOM params } return model; }
/** Do a quick traversal of the dTree to find the number of leaves on the tree. */ public int findNumLeaves(Value.Structured params) { int splitAttribute = params.intCmpnt(0); int numLeaves = 0; // we have hit a leaf. if (splitAttribute == -1) { numLeaves = 1; } else { Value.Vector paramVector = (Value.Vector) params.cmpnt(2); for (int i = 0; i < paramVector.length(); i++) { numLeaves += findNumLeaves((Value.Structured) paramVector.elt(i)); } } return numLeaves; }
/** Do a quick traversal of the dTree to find the maximum depth reached. */ public int findTreeDepth(Value.Structured params) { int splitAttribute = params.intCmpnt(0); int maxDepth = 0; // we have hit a leaf. if (splitAttribute == -1) { return 0; } else { Value.Vector paramVector = (Value.Vector) params.cmpnt(2); for (int i = 0; i < paramVector.length(); i++) { int newDepth = findTreeDepth((Value.Structured) paramVector.elt(i)); if (newDepth > maxDepth) { maxDepth = newDepth; } } } return maxDepth + 1; }
/** Set the current parameters to a given value. */ public void updateParams(Value newParams) { if (this.params == newParams) return; this.params = newParams; Value.Structured params = (Value.Structured) this.params; // save us doing repeated typecasts. int numLeaves = findNumLeaves(params); int depth = findTreeDepth(params) + 1; setLayout(new GridLayout(numLeaves, depth)); int currentDepth = 0; // Keep track of how deep into the tree we are int currentLeaf = 0; // Keep track of how many leaf noded have been placed so far. Component[][] component = new Component[depth][numLeaves]; // Use a stack to keep track of parameters not yet drawn (could also be done recursively.) java.util.Stack paramStack = new java.util.Stack(); paramStack.add(params); while (true) { Value.Structured currentParams = (Value.Structured) paramStack.pop(); int splitAttribute = currentParams.intCmpnt(0); if (splitAttribute == -1) { Value.Structured subModelParams = (Value.Structured) currentParams.cmpnt(2); Value.Model subModel = (Value.Model) subModelParams.cmpnt(0); Value subParams = subModelParams.cmpnt(1); Component leaf = DualVisualiser.makeComponent(varName, parentName, subModel, subParams); component[currentDepth][currentLeaf] = leaf; currentLeaf++; if (currentLeaf < numLeaves) { while (component[currentDepth - 1][currentLeaf] == null) { currentDepth--; } } } else { Value.Vector paramVector = (Value.Vector) currentParams.cmpnt(2); for (int i = 0; i < paramVector.length(); i++) { Value.Structured elt = (Value.Structured) paramVector.elt(paramVector.length() - i - 1); paramStack.push(elt); } int x = currentLeaf; for (int value = 0; value < paramVector.length(); value++) { Value.Structured elt = (Value.Structured) paramVector.elt(value); int subLeaves = findNumLeaves(elt); Color colour = getColour(value); for (int j = 0; j < subLeaves; j++) { if (component[currentDepth][x] != null) { throw new RuntimeException( "SHouldn't be overwriting! [" + currentDepth + "," + x + "]"); } if (j == 0) component[currentDepth][x] = new JLabel(currentParams.cmpnt(0).toString() + " = " + value); else component[currentDepth][x] = new JLabel(""); component[currentDepth][x].setBackground(colour); ((JComponent) component[currentDepth][x]).setOpaque(true); x++; } } currentDepth++; } if (currentLeaf == numLeaves) break; } for (int i = 0; i < numLeaves; i++) { for (int j = 0; j < depth; j++) { // if ( component[j][i] == null ) component[j][i] = new JLabel("("+j+","+i+")"); if (component[j][i] == null) component[j][i] = new JLabel(""); this.add(component[j][i]); } } }
/** * Returns a time series (a vector) sampled from the DBN (passed as a DTOM) Based on * BNetStochastic.generate(...). Used (perhaps amongst other things) during the calculation of * (approximate) KL divergence between models * * @param rand RNG to use * @param dtom DTOM, parameters of which to generate data from (must have caseInfo set in DTOM) * @param n length of time series to generate from parameters * @return Time series sampled/generated from the DTOM */ public static Value.Vector generateTimeSeriesDTOM(Random rand, DTOM dtom, int n) { // Get the variable names and number of nodes; also get the ordering of the nodes (used for // forward sampling) int numNodes = dtom.getNumNodes(); String[] name = ((cdms.core.Type.Structured) ((cdms.core.Type.Vector) (dtom.caseInfo.data).t).elt).labels; int[] order = dtom.getTotalOrderCopy(); // Initialize the vectors and structures etc for storing the time series data: (Value.Vector) Value.Vector origData = dtom.caseInfo.data; Type.Structured inputTypes = (Type.Structured) ((Type.Vector) origData.t).elt; // Type info for generated data is same as original data // Store the assignments in an integer array: int[][] newData = new int[numNodes][n]; // Get the parameters for each node (parameters for first time slice, and second time slice) Value.Vector[] paramsT0 = new Value.Vector[numNodes]; Value.Vector[] paramsT1 = new Value.Vector[numNodes]; for (int i = 0; i < numNodes; i++) { DNode node = (DNode) dtom.getNode(i); try { // Learn parameters - T1 (inc. temporal arcs) Value.Structured model = node.learnModel(dtom.caseInfo.mmlModelLearner, dtom.caseInfo.data); paramsT1[i] = (Value.Vector) model.cmpnt(2); // Learn parameters - T0 (no temporal arcs) Value.Structured modelT0 = node.learnModelT0(dtom.caseInfo.mmlModelLearner, dtom.caseInfo.data); paramsT0[i] = (Value.Vector) modelT0.cmpnt(2); } catch (LearnerException e) { throw new RuntimeException("Error learning models. " + e); } } // Determine the arity of each node: (Using a very inelegant method...) final Type.Structured datatype = (Type.Structured) ((Type.Vector) (dtom.caseInfo.data).t).elt; int[] arity = new int[numNodes]; for (int i = 0; i < numNodes; i++) { Type.Symbolic sType = (Type.Symbolic) datatype.cmpnts[i]; arity[i] = NeticaFn.makeValidNeticaNames(sType.ids, true).length; } // Generate a set of assignments for the FIRST time slice // (This needs to be done in order, to avoid sampling children before parents...) int[] assignmentT0 = new int[numNodes]; for (int i = 0; i < numNodes; i++) { DNode currNode = (DNode) dtom.getNode(order[i]); // ith node in total order Value.Vector currParams = paramsT0[order[i]].cmpnt(1); // parameters for ith node in total order // Get the appropriate distribution to sample from (given values of parents) Structured vals; if (currNode.getNumParents() == 0) { // No parents vals = (Value.Structured) currParams.elt( 0); // Contains the actual probability values; only one element in structure if // no parents... } else { // This node has parents (which already have assigned values) // Need to work out the index of the relevent parameters given the assignments of parents // Parameters are in order of [0,0,0], [0,0,1], [0,0,2], ..., [A,B,C] // Index given by: sum_x( val[pa[x]]*prod( arity[pa[x+1...end]] ) int[] currParents = currNode.getParentCopy(); // Intraslice parents // Collect assignments and arity for the current parents int[] assignment = new int[currParents.length]; int[] ar = new int[currParents.length]; for (int z = 0; z < currParents.length; z++) { assignment[z] = assignmentT0[currParents[z]]; ar[z] = arity[currParents[z]]; } int index = assignmentToIndexReverse(assignment, ar); // Find the set of parameters for the current parent assignment: vals = (Value.Structured) currParams.elt( index); // Contains the actual probability values for the current assignment of // parents } // Now, sample a value according to the probability distribution: double rv = rand.nextDouble(); // Random value b/w 0 and 1 double cumProb = 0.0; for (int idx = 0; idx < arity[order[i]]; idx++) { // i.e. loop through each value cumProb += vals.doubleCmpnt(idx); if (rv < cumProb) { // Assignment to node[ order[i] ] is idx assignmentT0[order[i]] = idx; break; } } } // Generate data from SECOND time slice CPDs - repeatedly... int[] assignmentT1 = new int[numNodes]; for (int lineNum = 0; lineNum < n; lineNum++) { // First: record the first time slice assignemnts. // Then: copy the second time slice assignments to the first time slice assignments if (lineNum > 0) { // System.out.println("Assignments line " + (lineNum-1) + " - " + // Arrays.toString(assignmentT0) ); for (int j = 0; j < numNodes; j++) { // j is variable number newData[j][lineNum - 1] = assignmentT0[j]; } assignmentT0 = assignmentT1; assignmentT1 = new int[numNodes]; } // Now, generate data for second time slice given values of first time slice: for (int i = 0; i < numNodes; i++) { DNode currNode = (DNode) dtom.getNode(order[i]); // ith node in total order Value.Vector currParams = paramsT1[order[i]].cmpnt(1); // parameters for ith node in total order // Get the appropriate distribution to sample from (given values of parents) Structured vals; if (currNode.getNumParents() == 0) { // No parents vals = (Value.Structured) currParams.elt( 0); // Contains the actual probability values; only one element in structure // if no parents... } else { // This node has parents (which already have assigned values) // Need to work out the index of the relevent parameters given the assignments of parents // Parameters are in order of [0,0,0], [0,0,1], [0,0,2], ..., [A,B,C] // Index given by: sum_x( val[pa[x]]*prod( arity[pa[x+1...end]] ) // Complicated by the fact that we have temporal parents and intraslice parents... // [intraslice_parents, temporal_parents] int[] currParents = currNode.getParentCopy(); // Intraslice parents int[] currParentsTemporal = currNode.getTemporalParentCopy(); // Temporal (interslice) parents // Collect the parent assignments and arities int numParents = currParents.length + currParentsTemporal.length; int[] assignment = new int[numParents]; int[] ar = new int[numParents]; for (int z = 0; z < numParents; z++) { if (z < currParents.length) { // Dealing with intraslice parents assignment[z] = assignmentT1[currParents[z]]; ar[z] = arity[currParents[z]]; } else { // Dealing with interslice (t0) parents assignment[z] = assignmentT0[currParentsTemporal[z - currParents.length]]; ar[z] = arity[currParentsTemporal[z - currParents.length]]; } } int index = assignmentToIndexReverse(assignment, ar); // Find the set of parameters for the current parent assignment: vals = (Value.Structured) currParams.elt( index); // Contains the actual probability values for the current assignment // of parents } // Now, sample a value according to the probability distribution: double rv = rand.nextDouble(); // Random value b/w 0 and 1 double cumProb = 0.0; for (int idx = 0; idx < arity[order[i]]; idx++) { // i.e. loop through each value cumProb += vals.doubleCmpnt(idx); if (rv < cumProb) { // Assignment to node[ order[i] ] is idx assignmentT1[order[i]] = idx; break; } } } } // Copy the very last line of data: for (int j = 0; j < numNodes; j++) { newData[j][n - 1] = assignmentT1[j]; } // Now, combine type and value (i.e. assignments) together for each variable: Value.Vector[] vecArray = new Value.Vector[numNodes]; for (int i = 0; i < numNodes; i++) { vecArray[i] = new VectorFN.FastDiscreteVector(newData[i], (Type.Symbolic) inputTypes.cmpnts[i]); } // And create the overall data structure: Value.Structured vecStruct = new Value.DefStructured(vecArray, name); Value.Vector newDataVector = new VectorFN.MultiCol(vecStruct); // Return the new time series vector... return newDataVector; }