private static void backPropogationDemo() { try { System.out.println(Util.ntimes("*", 100)); System.out.println( "\n BackpropagationDemo - Running BackProp on Iris data Set with 10 epochs of learning "); System.out.println(Util.ntimes("*", 100)); DataSet irisDataSet = DataSetFactory.getIrisDataSet(); Numerizer numerizer = new IrisDataSetNumerizer(); NNDataSet innds = new IrisNNDataSet(); innds.createExamplesFromDataSet(irisDataSet, numerizer); NNConfig config = new NNConfig(); config.setConfig(FeedForwardNeuralNetwork.NUMBER_OF_INPUTS, 4); config.setConfig(FeedForwardNeuralNetwork.NUMBER_OF_OUTPUTS, 3); config.setConfig(FeedForwardNeuralNetwork.NUMBER_OF_HIDDEN_NEURONS, 6); config.setConfig(FeedForwardNeuralNetwork.LOWER_LIMIT_WEIGHTS, -2.0); config.setConfig(FeedForwardNeuralNetwork.UPPER_LIMIT_WEIGHTS, 2.0); FeedForwardNeuralNetwork ffnn = new FeedForwardNeuralNetwork(config); ffnn.setTrainingScheme(new BackPropLearning(0.1, 0.9)); ffnn.trainOn(innds, 10); innds.refreshDataset(); int[] result = ffnn.testOnDataSet(innds); System.out.println(result[0] + " right, " + result[1] + " wrong"); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }
private static void perceptronDemo() { try { System.out.println(Util.ntimes("*", 100)); System.out.println( "\n Perceptron Demo - Running Perceptron on Iris data Set with 10 epochs of learning "); System.out.println(Util.ntimes("*", 100)); DataSet irisDataSet = DataSetFactory.getIrisDataSet(); Numerizer numerizer = new IrisDataSetNumerizer(); NNDataSet innds = new IrisNNDataSet(); innds.createExamplesFromDataSet(irisDataSet, numerizer); Perceptron perc = new Perceptron(3, 4); perc.trainOn(innds, 10); innds.refreshDataset(); int[] result = perc.testOnDataSet(innds); System.out.println(result[0] + " right, " + result[1] + " wrong"); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }