/** * Creates an <tt>ArrayBlockingQueue</tt> with the given (fixed) capacity and the specified access * policy. * * @param capacity the capacity of this queue * @param fair if <tt>true</tt> then queue accesses for threads blocked on insertion or removal, * are processed in FIFO order; if <tt>false</tt> the access order is unspecified. * @throws IllegalArgumentException if <tt>capacity</tt> is less than 1 */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = (E[]) new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); }
/** * An unbounded {@linkplain BlockingQueue blocking queue} of <tt>Delayed</tt> elements, in which an * element can only be taken when its delay has expired. The <em>head</em> of the queue is that * <tt>Delayed</tt> element whose delay expired furthest in the past. If no delay has expired there * is no head and <tt>poll</tt> will return <tt>null</tt>. Expiration occurs when an element's * <tt>getDelay(TimeUnit.NANOSECONDS)</tt> method returns a value less than or equal to zero. Even * though unexpired elements cannot be removed using <tt>take</tt> or <tt>poll</tt>, they are * otherwise treated as normal elements. For example, the <tt>size</tt> method returns the count of * both expired and unexpired elements. This queue does not permit null elements. * * <p>This class and its iterator implement all of the <em>optional</em> methods of the {@link * Collection} and {@link Iterator} interfaces. * * <p>This class is a member of the <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection */ public class DelayQueue<E extends Delayed> extends AbstractQueue<E> implements BlockingQueue<E> { private final transient ReentrantLock lock = new ReentrantLock(); private final PriorityQueue<E> q = new PriorityQueue<E>(); /** * Thread designated to wait for the element at the head of the queue. This variant of the * Leader-Follower pattern (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to minimize * unnecessary timed waiting. When a thread becomes the leader, it waits only for the next delay * to elapse, but other threads await indefinitely. The leader thread must signal some other * thread before returning from take() or poll(...), unless some other thread becomes leader in * the interim. Whenever the head of the queue is replaced with an element with an earlier * expiration time, the leader field is invalidated by being reset to null, and some waiting * thread, but not necessarily the current leader, is signalled. So waiting threads must be * prepared to acquire and lose leadership while waiting. */ private Thread leader = null; /** * Condition signalled when a newer element becomes available at the head of the queue or a new * thread may need to become leader. */ private final Condition available = lock.newCondition(); /** Creates a new <tt>DelayQueue</tt> that is initially empty. */ public DelayQueue() {} /** * Creates a <tt>DelayQueue</tt> initially containing the elements of the given collection of * {@link Delayed} instances. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any of its elements are null */ public DelayQueue(Collection<? extends E> c) { this.addAll(c); } /** * Inserts the specified element into this delay queue. * * @param e the element to add * @return <tt>true</tt> (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ public boolean add(E e) { return offer(e); } /** * Inserts the specified element into this delay queue. * * @param e the element to add * @return <tt>true</tt> * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { final ReentrantLock lock = this.lock; lock.lock(); try { q.offer(e); if (q.peek() == e) { leader = null; available.signal(); } return true; } finally { lock.unlock(); } } /** * Inserts the specified element into this delay queue. As the queue is unbounded this method will * never block. * * @param e the element to add * @throws NullPointerException {@inheritDoc} */ public void put(E e) { offer(e); } /** * Inserts the specified element into this delay queue. As the queue is unbounded this method will * never block. * * @param e the element to add * @param timeout This parameter is ignored as the method never blocks * @param unit This parameter is ignored as the method never blocks * @return <tt>true</tt> * @throws NullPointerException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) { return offer(e); } /** * Retrieves and removes the head of this queue, or returns <tt>null</tt> if this queue has no * elements with an expired delay. * * @return the head of this queue, or <tt>null</tt> if this queue has no elements with an expired * delay */ public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { E first = q.peek(); if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) return null; else return q.poll(); } finally { lock.unlock(); } } /** * Retrieves and removes the head of this queue, waiting if necessary until an element with an * expired delay is available on this queue. * * @return the head of this queue * @throws InterruptedException {@inheritDoc} */ public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { for (; ; ) { E first = q.peek(); if (first == null) available.await(); else { long delay = first.getDelay(TimeUnit.NANOSECONDS); if (delay <= 0) return q.poll(); else if (leader != null) available.await(); else { Thread thisThread = Thread.currentThread(); leader = thisThread; try { available.awaitNanos(delay); } finally { if (leader == thisThread) leader = null; } } } } } finally { if (leader == null && q.peek() != null) available.signal(); lock.unlock(); } } /** * Retrieves and removes the head of this queue, waiting if necessary until an element with an * expired delay is available on this queue, or the specified wait time expires. * * @return the head of this queue, or <tt>null</tt> if the specified waiting time elapses before * an element with an expired delay becomes available * @throws InterruptedException {@inheritDoc} */ public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { for (; ; ) { E first = q.peek(); if (first == null) { if (nanos <= 0) return null; else nanos = available.awaitNanos(nanos); } else { long delay = first.getDelay(TimeUnit.NANOSECONDS); if (delay <= 0) return q.poll(); if (nanos <= 0) return null; if (nanos < delay || leader != null) nanos = available.awaitNanos(nanos); else { Thread thisThread = Thread.currentThread(); leader = thisThread; try { long timeLeft = available.awaitNanos(delay); nanos -= delay - timeLeft; } finally { if (leader == thisThread) leader = null; } } } } } finally { if (leader == null && q.peek() != null) available.signal(); lock.unlock(); } } /** * Retrieves, but does not remove, the head of this queue, or returns <tt>null</tt> if this queue * is empty. Unlike <tt>poll</tt>, if no expired elements are available in the queue, this method * returns the element that will expire next, if one exists. * * @return the head of this queue, or <tt>null</tt> if this queue is empty. */ public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return q.peek(); } finally { lock.unlock(); } } public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return q.size(); } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); final ReentrantLock lock = this.lock; lock.lock(); try { int n = 0; for (; ; ) { E first = q.peek(); if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) break; c.add(q.poll()); ++n; } return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final ReentrantLock lock = this.lock; lock.lock(); try { int n = 0; while (n < maxElements) { E first = q.peek(); if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) break; c.add(q.poll()); ++n; } return n; } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this delay queue. The queue will be empty after * this call returns. Elements with an unexpired delay are not waited for; they are simply * discarded from the queue. */ public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { q.clear(); } finally { lock.unlock(); } } /** * Always returns <tt>Integer.MAX_VALUE</tt> because a <tt>DelayQueue</tt> is not capacity * constrained. * * @return <tt>Integer.MAX_VALUE</tt> */ public int remainingCapacity() { return Integer.MAX_VALUE; } /** * Returns an array containing all of the elements in this queue. The returned array elements are * in no particular order. * * <p>The returned array will be "safe" in that no references to it are maintained by this queue. * (In other words, this method must allocate a new array). The caller is thus free to modify the * returned array. * * <p>This method acts as bridge between array-based and collection-based APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { return q.toArray(); } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue; the runtime type of the returned * array is that of the specified array. The returned array elements are in no particular order. * If the queue fits in the specified array, it is returned therein. Otherwise, a new array is * allocated with the runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare (i.e., the array has more * elements than this queue), the element in the array immediately following the end of the queue * is set to <tt>null</tt>. * * <p>Like the {@link #toArray()} method, this method acts as bridge between array-based and * collection-based APIs. Further, this method allows precise control over the runtime type of the * output array, and may, under certain circumstances, be used to save allocation costs. * * <p>The following code can be used to dump a delay queue into a newly allocated array of * <tt>Delayed</tt>: * * <pre> * Delayed[] a = q.toArray(new Delayed[0]);</pre> * * Note that <tt>toArray(new Object[0])</tt> is identical in function to <tt>toArray()</tt>. * * @param a the array into which the elements of the queue are to be stored, if it is big enough; * otherwise, a new array of the same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array is not a supertype of * the runtime type of every element in this queue * @throws NullPointerException if the specified array is null */ public <T> T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { return q.toArray(a); } finally { lock.unlock(); } } /** * Removes a single instance of the specified element from this queue, if it is present, whether * or not it has expired. */ public boolean remove(Object o) { final ReentrantLock lock = this.lock; lock.lock(); try { return q.remove(o); } finally { lock.unlock(); } } /** * Returns an iterator over all the elements (both expired and unexpired) in this queue. The * iterator does not return the elements in any particular order. * * <p>The returned iterator is a "weakly consistent" iterator that will never throw {@link * java.util.ConcurrentModificationException ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and may (but is not * guaranteed to) reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue */ public Iterator<E> iterator() { return new Itr(toArray()); } /** Snapshot iterator that works off copy of underlying q array. */ private class Itr implements Iterator<E> { final Object[] array; // Array of all elements int cursor; // index of next element to return; int lastRet; // index of last element, or -1 if no such Itr(Object[] array) { lastRet = -1; this.array = array; } public boolean hasNext() { return cursor < array.length; } @SuppressWarnings("unchecked") public E next() { if (cursor >= array.length) throw new NoSuchElementException(); lastRet = cursor; return (E) array[cursor++]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); Object x = array[lastRet]; lastRet = -1; // Traverse underlying queue to find == element, // not just a .equals element. lock.lock(); try { for (Iterator it = q.iterator(); it.hasNext(); ) { if (it.next() == x) { it.remove(); return; } } } finally { lock.unlock(); } } } }