/** {@inheritDoc} */
 public int read() throws IOException {
   synchronized (file) {
     int retval = -1;
     if (currentPosition < endPosition) {
       file.seek(currentPosition);
       currentPosition++;
       retval = file.read();
     }
     return retval;
   }
 }
 /** {@inheritDoc} */
 public int read(byte[] b, int offset, int length) throws IOException {
   // only allow a read of the amount available.
   if (length > available()) {
     length = available();
   }
   int amountRead = -1;
   // only read if there are bytes actually available, otherwise
   // return -1 if the EOF has been reached.
   if (available() > 0) {
     synchronized (file) {
       file.seek(currentPosition);
       amountRead = file.read(b, offset, length);
     }
   }
   // update the current cursor position.
   if (amountRead > 0) {
     currentPosition += amountRead;
   }
   return amountRead;
 }
  // change the return type to Img<FloatType> and adjust the code accordingly
  public <T extends RealType<T>> Img<T> gradient(Img<T> img) {
    // create a new ImgLib2 image of same dimensions, but FloatType
    // to to that, create a new PlanarImgFactory and instantiate a new
    // Img<FloatType>
    /**
     * ImgFactory<T> imgFactory = img.factory(); Img<T> gradientImg = imgFactory.create( img,
     * img.firstElement() );
     */

    // create a localizing cursor on the GradientImg, it will iterate all pixels
    // and is able to efficiently return its position at each pixel, at each
    // pixel we will compute the gradient
    /** Cursor<T> cursor = gradientImg.localizingCursor(); */

    // We extend the input image by a mirroring out of bounds strategy so
    // that we can access pixels outside of the image
    RandomAccessible<T> view = Views.extendMirrorSingle(img);

    // instantiate a RandomAccess on the extended view, it will be used to
    // compute the gradient locally at each pixel location
    RandomAccess<T> randomAccess = view.randomAccess();

    // iterate over all pixels
    while (cursor.hasNext()) {
      // move the cursor to the next pixel
      cursor.fwd();

      // compute gradient in each dimension
      double gradient = 0;

      for (int d = 0; d < img.numDimensions(); ++d) {
        // set the randomaccess to the location of the cursor
        randomAccess.setPosition(cursor);

        // move one pixel back in dimension d
        randomAccess.bck(d);

        // get the value
        double v1 = randomAccess.get().getRealDouble();

        // move twice forward in dimension d, i.e.
        // one pixel above the location of the cursor
        randomAccess.fwd(d);
        randomAccess.fwd(d);

        // get the value
        double v2 = randomAccess.get().getRealDouble();

        // add the square of the magnitude of the gradient
        gradient += ((v2 - v1) * (v2 - v1)) / 4;
      }

      // the square root of all quadratic sums yields
      // the magnitude of the gradient at this location,
      // set the pixel value of the gradient image

      // change the value to float, otherwise it will not be
      // compatible
      cursor.get().setReal(Math.sqrt(gradient));
    }

    return gradientImg;
  }