/** * Operate on the given chromosome with the given mutation rate. * * @param a_chrom chromosome to operate * @param a_rate mutation rate * @param a_generator random generator to use (must not be null) * @return mutated chromosome of null if no mutation has occured. * @author Audrius Meskauskas * @author Florian Hafner * @since 3.3.2 */ protected IChromosome operate( final IChromosome a_chrom, final int a_rate, final RandomGenerator a_generator) { IChromosome chromosome = null; // ---------------------------------------- for (int j = m_startOffset; j < a_chrom.size(); j++) { // Ensure probability of 1/currentRate for applying mutation. // ---------------------------------------------------------- if (a_generator.nextInt(a_rate) == 0) { if (chromosome == null) { chromosome = (IChromosome) a_chrom.clone(); // In case monitoring is active, support it. // ----------------------------------------- if (m_monitorActive) { chromosome.setUniqueIDTemplate(a_chrom.getUniqueID(), 1); } } Gene[] genes = chromosome.getGenes(); if (m_range == 0) { m_range = genes.length; } Gene[] mutated = operate(a_generator, j, genes); // setGenes is not required for this operator, but it may // be needed for the derived operators. // ------------------------------------------------------ try { chromosome.setGenes(mutated); } catch (InvalidConfigurationException cex) { throw new Error("Gene type not allowed by constraint checker", cex); } } } return chromosome; }
/** * Returns the total number of coins represented by all of the genes in the given potential * solution. * * @param a_potentialsolution the potential solution to evaluate * @return total number of coins represented by the given Chromosome * @author Neil Rotstan * @since 1.0 */ public static int getTotalNumberOfCoins(IChromosome a_potentialsolution) { int totalCoins = 0; int numberOfGenes = a_potentialsolution.size(); for (int i = 0; i < numberOfGenes; i++) { totalCoins += getNumberOfCoinsAtGene(a_potentialsolution, i); } return totalCoins; }
/** * Marshall a Chromosome instance to an XML Element representation, including its contained Genes * as sub-elements. This may be useful in scenarios where representation as an entire Document is * undesirable, such as when the representation of this Chromosome is to be combined with other * elements in a single Document. * * @param a_subject the chromosome to represent as an XML element * @param a_xmlDocument a Document instance that will be used to create the Element instance. Note * that the element will NOT be added to the document by this method * @return an Element object representing the given Chromosome * @author Neil Rotstan * @since 1.0 * @deprecated use XMLDocumentBuilder instead */ public static Element representChromosomeAsElement( final IChromosome a_subject, final Document a_xmlDocument) { // Start by creating an element for the chromosome and its size // attribute, which represents the number of genes in the chromosome. // ------------------------------------------------------------------ Element chromosomeElement = a_xmlDocument.createElement(CHROMOSOME_TAG); chromosomeElement.setAttribute(SIZE_ATTRIBUTE, Integer.toString(a_subject.size())); // Next create the genes element with its nested gene elements, // which will contain string representations of the alleles. // -------------------------------------------------------------- Element genesElement = representGenesAsElement(a_subject.getGenes(), a_xmlDocument); // Add the new genes element to the chromosome element and then // return the chromosome element. // ------------------------------------------------------------- chromosomeElement.appendChild(genesElement); return chromosomeElement; }
/** * Executes the genetic algorithm to determine the minimum number of items necessary to make up * the given target volume. The solution will then be written to the console. * * @param a_knapsackVolume the target volume for which this method is attempting to produce the * optimal list of items * @throws Exception * @author Klaus Meffert * @since 2.3 */ public static void findItemsForVolume(double a_knapsackVolume) throws Exception { // Start with a DefaultConfiguration, which comes setup with the // most common settings. // ------------------------------------------------------------- Configuration conf = new DefaultConfiguration(); conf.setPreservFittestIndividual(true); // Set the fitness function we want to use. We construct it with // the target volume passed in to this method. // --------------------------------------------------------- FitnessFunction myFunc = new KnapsackFitnessFunction(a_knapsackVolume); conf.setFitnessFunction(myFunc); // Now we need to tell the Configuration object how we want our // Chromosomes to be setup. We do that by actually creating a // sample Chromosome and then setting it on the Configuration // object. As mentioned earlier, we want our Chromosomes to each // have as many genes as there are different items available. We want the // values (alleles) of those genes to be integers, which represent // how many items of that type we have. We therefore use the // IntegerGene class to represent each of the genes. That class // also lets us specify a lower and upper bound, which we set // to senseful values (i.e. maximum possible) for each item type. // -------------------------------------------------------------- Gene[] sampleGenes = new Gene[itemVolumes.length]; for (int i = 0; i < itemVolumes.length; i++) { sampleGenes[i] = new IntegerGene(conf, 0, (int) Math.ceil(a_knapsackVolume / itemVolumes[i])); } IChromosome sampleChromosome = new Chromosome(conf, sampleGenes); conf.setSampleChromosome(sampleChromosome); // Finally, we need to tell the Configuration object how many // Chromosomes we want in our population. The more Chromosomes, // the larger number of potential solutions (which is good for // finding the answer), but the longer it will take to evolve // the population (which could be seen as bad). // ------------------------------------------------------------ conf.setPopulationSize(50); // Create random initial population of Chromosomes. // Here we try to read in a previous run via XMLManager.readFile(..) // for demonstration purpose! // ----------------------------------------------------------------- Genotype population; try { Document doc = XMLManager.readFile(new File("knapsackJGAP.xml")); population = XMLManager.getGenotypeFromDocument(conf, doc); } catch (FileNotFoundException fex) { population = Genotype.randomInitialGenotype(conf); } population = Genotype.randomInitialGenotype(conf); // Evolve the population. Since we don't know what the best answer // is going to be, we just evolve the max number of times. // --------------------------------------------------------------- for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) { population.evolve(); } // Save progress to file. A new run of this example will then be able to // resume where it stopped before! // --------------------------------------------------------------------- // represent Genotype as tree with elements Chromomes and Genes // ------------------------------------------------------------ DataTreeBuilder builder = DataTreeBuilder.getInstance(); IDataCreators doc2 = builder.representGenotypeAsDocument(population); // create XML document from generated tree // --------------------------------------- XMLDocumentBuilder docbuilder = new XMLDocumentBuilder(); Document xmlDoc = (Document) docbuilder.buildDocument(doc2); XMLManager.writeFile(xmlDoc, new File("knapsackJGAP.xml")); // Display the best solution we found. // ----------------------------------- IChromosome bestSolutionSoFar = population.getFittestChromosome(); System.out.println( "The best solution has a fitness value of " + bestSolutionSoFar.getFitnessValue()); System.out.println("It contained the following: "); int count; double totalVolume = 0.0d; for (int i = 0; i < bestSolutionSoFar.size(); i++) { count = ((Integer) bestSolutionSoFar.getGene(i).getAllele()).intValue(); if (count > 0) { System.out.println("\t " + count + " x " + itemNames[i]); totalVolume += itemVolumes[i] * count; } } System.out.println("\nFor a total volume of " + totalVolume + " ccm"); System.out.println("Expected volume was " + a_knapsackVolume + " ccm"); System.out.println("Volume difference is " + Math.abs(totalVolume - a_knapsackVolume) + " ccm"); }
/** * Compares the given Chromosome to this Chromosome. This chromosome is considered to be "less * than" the given chromosome if it has a fewer number of genes or if any of its gene values * (alleles) are less than their corresponding gene values in the other chromosome. * * @param other the Chromosome against which to compare this chromosome * @return a negative number if this chromosome is "less than" the given chromosome, zero if they * are equal to each other, and a positive number if this chromosome is "greater than" the * given chromosome * @author Neil Rotstan * @author Klaus Meffert * @since 1.0 */ public int compareTo(Object other) { // First, if the other Chromosome is null, then this chromosome is // automatically the "greater" Chromosome. // --------------------------------------------------------------- if (other == null) { return 1; } int size = size(); IChromosome otherChromosome = (IChromosome) other; Gene[] otherGenes = otherChromosome.getGenes(); // If the other Chromosome doesn't have the same number of genes, // then whichever has more is the "greater" Chromosome. // -------------------------------------------------------------- if (otherChromosome.size() != size) { return size() - otherChromosome.size(); } // Next, compare the gene values (alleles) for differences. If // one of the genes is not equal, then we return the result of its // comparison. // --------------------------------------------------------------- for (int i = 0; i < size; i++) { int comparison = getGene(i).compareTo(otherGenes[i]); if (comparison != 0) { return comparison; } } // Compare current fitness value. // ------------------------------ if (m_fitnessValue != otherChromosome.getFitnessValueDirectly()) { FitnessEvaluator eval = getConfiguration().getFitnessEvaluator(); if (eval != null) { if (eval.isFitter(m_fitnessValue, otherChromosome.getFitnessValueDirectly())) { return 1; } else { return -1; } } else { // undetermined order, but unequal! // -------------------------------- return -1; } } if (m_compareAppData) { // Compare application data. // ------------------------- if (getApplicationData() == null) { if (otherChromosome.getApplicationData() != null) { return -1; } } else if (otherChromosome.getApplicationData() == null) { return 1; } else { if (getApplicationData() instanceof Comparable) { try { return ((Comparable) getApplicationData()) .compareTo(otherChromosome.getApplicationData()); } catch (ClassCastException cex) { /** @todo improve */ return -1; } } else { return getApplicationData() .getClass() .getName() .compareTo(otherChromosome.getApplicationData().getClass().getName()); } } } // Everything is equal. Return zero. // --------------------------------- return 0; }