private static Header parseHeader(Node parent) throws XmlParserException { Header header = new Header(); NodeList nodes = parent.getChildNodes(); for (int nodeid = 0; nodeid < nodes.getLength(); ++nodeid) { Node node = nodes.item(nodeid); if (node.getNodeType() != Node.ELEMENT_NODE) continue; Element element = (Element) node; try { if (element.getTagName().equals("nrpeaks")) header.setNrPeaks(Integer.parseInt(element.getTextContent())); else if (element.getTagName().equals("date")) header.setDate(element.getTextContent()); else if (element.getTagName().equals("owner")) header.setOwner(element.getTextContent()); else if (element.getTagName().equals("description")) header.setDescription(element.getTextContent()); else if (element.getTagName().equals("sets")) header.addSetInfos(parseSets(element)); else if (element.getTagName().equals("measurements")) header.addMeasurementInfos(parseMeasurements(element)); else if (element.getTagName().equals("annotations")) { Vector<Annotation> annotations = parseAnnotations(element); if (annotations != null) for (Annotation annotation : annotations) header.addAnnotation(annotation); } } catch (Exception e) { throw new XmlParserException( "Invalid value in header (" + element.getTagName() + "): '" + e.getMessage() + "'."); } } return header; }
public static PMML generateSimpleNeuralNetwork( String modelName, String[] inputfieldNames, String[] outputfieldNames, double[] inputMeans, double[] inputStds, double[] outputMeans, double[] outputStds, int hiddenSize, double[] weights) { int counter = 0; int wtsIndex = 0; PMML pmml = new PMML(); pmml.setVersion("4.0"); Header header = new Header(); Application app = new Application(); app.setName("Drools PMML Generator"); app.setVersion("0.01 Alpha"); header.setApplication(app); header.setCopyright("BSD"); header.setDescription(" Smart Vent Model "); Timestamp ts = new Timestamp(); ts.getContent().add(new java.util.Date().toString()); header.setTimestamp(ts); pmml.setHeader(header); DataDictionary dic = new DataDictionary(); dic.setNumberOfFields(BigInteger.valueOf(inputfieldNames.length + outputfieldNames.length)); for (String ifld : inputfieldNames) { DataField dataField = new DataField(); dataField.setName(ifld); dataField.setDataType(DATATYPE.DOUBLE); dataField.setDisplayName(ifld); dataField.setOptype(OPTYPE.CONTINUOUS); dic.getDataFields().add(dataField); } for (String ofld : outputfieldNames) { DataField dataField = new DataField(); dataField.setName(ofld); dataField.setDataType(DATATYPE.DOUBLE); dataField.setDisplayName(ofld); dataField.setOptype(OPTYPE.CONTINUOUS); dic.getDataFields().add(dataField); } pmml.setDataDictionary(dic); NeuralNetwork nnet = new NeuralNetwork(); nnet.setActivationFunction(ACTIVATIONFUNCTION.LOGISTIC); nnet.setFunctionName(MININGFUNCTION.REGRESSION); nnet.setNormalizationMethod(NNNORMALIZATIONMETHOD.NONE); nnet.setModelName(modelName); MiningSchema miningSchema = new MiningSchema(); for (String ifld : inputfieldNames) { MiningField mfld = new MiningField(); mfld.setName(ifld); mfld.setOptype(OPTYPE.CONTINUOUS); mfld.setUsageType(FIELDUSAGETYPE.ACTIVE); miningSchema.getMiningFields().add(mfld); } for (String ofld : outputfieldNames) { MiningField mfld = new MiningField(); mfld.setName(ofld); mfld.setOptype(OPTYPE.CONTINUOUS); mfld.setUsageType(FIELDUSAGETYPE.PREDICTED); miningSchema.getMiningFields().add(mfld); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(miningSchema); Output outputs = new Output(); for (String ofld : outputfieldNames) { OutputField outFld = new OutputField(); outFld.setName("Out_" + ofld); outFld.setTargetField(ofld); outputs.getOutputFields().add(outFld); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(outputs); NeuralInputs nins = new NeuralInputs(); nins.setNumberOfInputs(BigInteger.valueOf(inputfieldNames.length)); for (int j = 0; j < inputfieldNames.length; j++) { String ifld = inputfieldNames[j]; NeuralInput nin = new NeuralInput(); nin.setId("" + counter++); DerivedField der = new DerivedField(); der.setDataType(DATATYPE.DOUBLE); der.setOptype(OPTYPE.CONTINUOUS); NormContinuous nc = new NormContinuous(); nc.setField(ifld); nc.setOutliers(OUTLIERTREATMENTMETHOD.AS_IS); LinearNorm lin1 = new LinearNorm(); lin1.setOrig(0); lin1.setNorm(-inputMeans[j] / inputStds[j]); nc.getLinearNorms().add(lin1); LinearNorm lin2 = new LinearNorm(); lin2.setOrig(inputMeans[j]); lin2.setNorm(0); nc.getLinearNorms().add(lin2); der.setNormContinuous(nc); nin.setDerivedField(der); nins.getNeuralInputs().add(nin); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(nins); NeuralLayer hidden = new NeuralLayer(); hidden.setNumberOfNeurons(BigInteger.valueOf(hiddenSize)); for (int j = 0; j < hiddenSize; j++) { Neuron n = new Neuron(); n.setId("" + counter++); n.setBias(weights[wtsIndex++]); for (int k = 0; k < inputfieldNames.length; k++) { Synapse con = new Synapse(); con.setFrom("" + k); con.setWeight(weights[wtsIndex++]); n.getCons().add(con); } hidden.getNeurons().add(n); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(hidden); NeuralLayer outer = new NeuralLayer(); outer.setActivationFunction(ACTIVATIONFUNCTION.IDENTITY); outer.setNumberOfNeurons(BigInteger.valueOf(outputfieldNames.length)); for (int j = 0; j < outputfieldNames.length; j++) { Neuron n = new Neuron(); n.setId("" + counter++); n.setBias(weights[wtsIndex++]); for (int k = 0; k < hiddenSize; k++) { Synapse con = new Synapse(); con.setFrom("" + (k + inputfieldNames.length)); con.setWeight(weights[wtsIndex++]); n.getCons().add(con); } outer.getNeurons().add(n); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(outer); NeuralOutputs finalOuts = new NeuralOutputs(); finalOuts.setNumberOfOutputs(BigInteger.valueOf(outputfieldNames.length)); for (int j = 0; j < outputfieldNames.length; j++) { NeuralOutput output = new NeuralOutput(); output.setOutputNeuron("" + (j + inputfieldNames.length + hiddenSize)); DerivedField der = new DerivedField(); der.setDataType(DATATYPE.DOUBLE); der.setOptype(OPTYPE.CONTINUOUS); NormContinuous nc = new NormContinuous(); nc.setField(outputfieldNames[j]); nc.setOutliers(OUTLIERTREATMENTMETHOD.AS_IS); LinearNorm lin1 = new LinearNorm(); lin1.setOrig(0); lin1.setNorm(-outputMeans[j] / outputStds[j]); nc.getLinearNorms().add(lin1); LinearNorm lin2 = new LinearNorm(); lin2.setOrig(outputMeans[j]); lin2.setNorm(0); nc.getLinearNorms().add(lin2); der.setNormContinuous(nc); output.setDerivedField(der); finalOuts.getNeuralOutputs().add(output); } nnet.getExtensionsAndNeuralLayersAndNeuralInputs().add(finalOuts); pmml.getAssociationModelsAndBaselineModelsAndClusteringModels().add(nnet); return pmml; }