/** * Return the Nth immediate child of this node, or null if the index is out of bounds. Use to * implement NodeList.item(). * * @param index int */ private Node nodeListItem(int index) { if (fNodeListCache == null) { // get rid of trivial case if (firstChild == lastChild()) { return index == 0 ? firstChild : null; } // otherwise request a cache object fNodeListCache = ownerDocument.getNodeListCache(this); } int i = fNodeListCache.fChildIndex; ChildNode n = fNodeListCache.fChild; boolean firstAccess = true; // short way if (i != -1 && n != null) { firstAccess = false; if (i < index) { while (i < index && n != null) { i++; n = n.nextSibling; } } else if (i > index) { while (i > index && n != null) { i--; n = n.previousSibling(); } } } else { // long way if (index < 0) { return null; } n = firstChild; for (i = 0; i < index && n != null; i++) { n = n.nextSibling; } } // release cache if reaching last child or first child if (!firstAccess && (n == firstChild || n == lastChild())) { fNodeListCache.fChildIndex = -1; fNodeListCache.fChild = null; ownerDocument.freeNodeListCache(fNodeListCache); // we can keep using the cache until it is actually reused // fNodeListCache will be nulled by the pool (document) if that // happens. // fNodeListCache = null; } else { // otherwise update it fNodeListCache.fChildIndex = i; fNodeListCache.fChild = n; } return n; } // nodeListItem(int):Node
/** * Count the immediate children of this node. Use to implement NodeList.getLength(). * * @return int */ private int nodeListGetLength() { if (fNodeListCache == null) { // get rid of trivial cases if (firstChild == null) { return 0; } if (firstChild == lastChild()) { return 1; } // otherwise request a cache object fNodeListCache = ownerDocument.getNodeListCache(this); } if (fNodeListCache.fLength == -1) { // is the cached length invalid ? int l; ChildNode n; // start from the cached node if we have one if (fNodeListCache.fChildIndex != -1 && fNodeListCache.fChild != null) { l = fNodeListCache.fChildIndex; n = fNodeListCache.fChild; } else { n = firstChild; l = 0; } while (n != null) { l++; n = n.nextSibling; } fNodeListCache.fLength = l; } return fNodeListCache.fLength; } // nodeListGetLength():int
/** * Make newChild occupy the location that oldChild used to have. Note that newChild will first be * removed from its previous parent, if any. Equivalent to inserting newChild before oldChild, * then removing oldChild. * * @return oldChild, in its new state (removed). * @throws DOMException(HIERARCHY_REQUEST_ERR) if newChild is of a type that shouldn't be a child * of this node, or if newChild is one of our ancestors. * @throws DOMException(WRONG_DOCUMENT_ERR) if newChild has a different owner document than we do. * @throws DOMException(NOT_FOUND_ERR) if oldChild is not a child of this node. * @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is read-only. */ public Node replaceChild(Node newChild, Node oldChild) throws DOMException { // If Mutation Events are being generated, this operation might // throw aggregate events twice when modifying an Attr -- once // on insertion and once on removal. DOM Level 2 does not specify // this as either desirable or undesirable, but hints that // aggregations should be issued only once per user request. // notify document ownerDocument.replacingNode(this); internalInsertBefore(newChild, oldChild, true); if (newChild != oldChild) { internalRemoveChild(oldChild, true); } // notify document ownerDocument.replacedNode(this); return oldChild; }
/** * NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able to control which mutation * events are spawned. This version of the removeChild operation allows us to do so. It is not * intended for use by application programs. */ Node internalRemoveChild(Node oldChild, boolean replace) throws DOMException { CoreDocumentImpl ownerDocument = ownerDocument(); if (ownerDocument.errorChecking) { if (isReadOnly()) { throw new DOMException( DOMException.NO_MODIFICATION_ALLOWED_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null)); } if (oldChild != null && oldChild.getParentNode() != this) { throw new DOMException( DOMException.NOT_FOUND_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null)); } } ChildNode oldInternal = (ChildNode) oldChild; // notify document ownerDocument.removingNode(this, oldInternal, replace); // update cached length if we have any if (fNodeListCache != null) { if (fNodeListCache.fLength != -1) { fNodeListCache.fLength--; } if (fNodeListCache.fChildIndex != -1) { // if the removed node is the cached node // move the cache to its (soon former) previous sibling if (fNodeListCache.fChild == oldInternal) { fNodeListCache.fChildIndex--; fNodeListCache.fChild = oldInternal.previousSibling(); } else { // otherwise just invalidate the cache fNodeListCache.fChildIndex = -1; } } } // Patch linked list around oldChild // Note: lastChild == firstChild.previousSibling if (oldInternal == firstChild) { // removing first child oldInternal.isFirstChild(false); firstChild = oldInternal.nextSibling; if (firstChild != null) { firstChild.isFirstChild(true); firstChild.previousSibling = oldInternal.previousSibling; } } else { ChildNode prev = oldInternal.previousSibling; ChildNode next = oldInternal.nextSibling; prev.nextSibling = next; if (next == null) { // removing last child firstChild.previousSibling = prev; } else { // removing some other child in the middle next.previousSibling = prev; } } // Save previous sibling for normalization checking. ChildNode oldPreviousSibling = oldInternal.previousSibling(); // Remove oldInternal's references to tree oldInternal.ownerNode = ownerDocument; oldInternal.isOwned(false); oldInternal.nextSibling = null; oldInternal.previousSibling = null; changed(); // notify document ownerDocument.removedNode(this, replace); checkNormalizationAfterRemove(oldPreviousSibling); return oldInternal; } // internalRemoveChild(Node,boolean):Node
/** * NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able to control which mutation * events are spawned. This version of the insertBefore operation allows us to do so. It is not * intended for use by application programs. */ Node internalInsertBefore(Node newChild, Node refChild, boolean replace) throws DOMException { boolean errorChecking = ownerDocument.errorChecking; if (newChild.getNodeType() == Node.DOCUMENT_FRAGMENT_NODE) { // SLOW BUT SAFE: We could insert the whole subtree without // juggling so many next/previous pointers. (Wipe out the // parent's child-list, patch the parent pointers, set the // ends of the list.) But we know some subclasses have special- // case behavior they add to insertBefore(), so we don't risk it. // This approch also takes fewer bytecodes. // NOTE: If one of the children is not a legal child of this // node, throw HIERARCHY_REQUEST_ERR before _any_ of the children // have been transferred. (Alternative behaviors would be to // reparent up to the first failure point or reparent all those // which are acceptable to the target node, neither of which is // as robust. PR-DOM-0818 isn't entirely clear on which it // recommends????? // No need to check kids for right-document; if they weren't, // they wouldn't be kids of that DocFrag. if (errorChecking) { for (Node kid = newChild.getFirstChild(); // Prescan kid != null; kid = kid.getNextSibling()) { if (!ownerDocument.isKidOK(this, kid)) { throw new DOMException( DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null)); } } } while (newChild.hasChildNodes()) { insertBefore(newChild.getFirstChild(), refChild); } return newChild; } if (newChild == refChild) { // stupid case that must be handled as a no-op triggering events... refChild = refChild.getNextSibling(); removeChild(newChild); insertBefore(newChild, refChild); return newChild; } if (needsSyncChildren()) { synchronizeChildren(); } if (errorChecking) { if (isReadOnly()) { throw new DOMException( DOMException.NO_MODIFICATION_ALLOWED_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null)); } if (newChild.getOwnerDocument() != ownerDocument && newChild != ownerDocument) { throw new DOMException( DOMException.WRONG_DOCUMENT_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "WRONG_DOCUMENT_ERR", null)); } if (!ownerDocument.isKidOK(this, newChild)) { throw new DOMException( DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null)); } // refChild must be a child of this node (or null) if (refChild != null && refChild.getParentNode() != this) { throw new DOMException( DOMException.NOT_FOUND_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null)); } // Prevent cycles in the tree // newChild cannot be ancestor of this Node, // and actually cannot be this if (ownerDocument.ancestorChecking) { boolean treeSafe = true; for (NodeImpl a = this; treeSafe && a != null; a = a.parentNode()) { treeSafe = newChild != a; } if (!treeSafe) { throw new DOMException( DOMException.HIERARCHY_REQUEST_ERR, DOMMessageFormatter.formatMessage( DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null)); } } } // notify document ownerDocument.insertingNode(this, replace); // Convert to internal type, to avoid repeated casting ChildNode newInternal = (ChildNode) newChild; Node oldparent = newInternal.parentNode(); if (oldparent != null) { oldparent.removeChild(newInternal); } // Convert to internal type, to avoid repeated casting ChildNode refInternal = (ChildNode) refChild; // Attach up newInternal.ownerNode = this; newInternal.isOwned(true); // Attach before and after // Note: firstChild.previousSibling == lastChild!! if (firstChild == null) { // this our first and only child firstChild = newInternal; newInternal.isFirstChild(true); newInternal.previousSibling = newInternal; } else { if (refInternal == null) { // this is an append ChildNode lastChild = firstChild.previousSibling; lastChild.nextSibling = newInternal; newInternal.previousSibling = lastChild; firstChild.previousSibling = newInternal; } else { // this is an insert if (refChild == firstChild) { // at the head of the list firstChild.isFirstChild(false); newInternal.nextSibling = firstChild; newInternal.previousSibling = firstChild.previousSibling; firstChild.previousSibling = newInternal; firstChild = newInternal; newInternal.isFirstChild(true); } else { // somewhere in the middle ChildNode prev = refInternal.previousSibling; newInternal.nextSibling = refInternal; prev.nextSibling = newInternal; refInternal.previousSibling = newInternal; newInternal.previousSibling = prev; } } } changed(); // update cached length if we have any if (fNodeListCache != null) { if (fNodeListCache.fLength != -1) { fNodeListCache.fLength++; } if (fNodeListCache.fChildIndex != -1) { // if we happen to insert just before the cached node, update // the cache to the new node to match the cached index if (fNodeListCache.fChild == refInternal) { fNodeListCache.fChild = newInternal; } else { // otherwise just invalidate the cache fNodeListCache.fChildIndex = -1; } } } // notify document ownerDocument.insertedNode(this, newInternal, replace); checkNormalizationAfterInsert(newInternal); return newChild; } // internalInsertBefore(Node,Node,boolean):Node