/**
  * @throws Exception
  * @author Klaus Meffert
  */
 public void testGetPopulationSize_0() throws Exception {
   Configuration conf = new Configuration();
   assertEquals(0, conf.getPopulationSize());
   final int SIZE = 22;
   conf.setPopulationSize(SIZE);
   assertEquals(SIZE, conf.getPopulationSize());
 }
 /**
  * @throws Exception
  * @author Klaus Meffert
  */
 public void testGetter_0() throws Exception {
   Configuration conf = new Configuration();
   Genotype.setStaticConfiguration(conf);
   assertEquals(false, conf.isLocked());
   FitnessFunction fitFunc = new StaticFitnessFunction(2);
   conf.setFitnessFunction(fitFunc);
   Gene gene = new BooleanGene(conf);
   Chromosome sample = new Chromosome(conf, gene, 55);
   conf.setSampleChromosome(sample);
   NaturalSelector natSel = new WeightedRouletteSelector();
   conf.addNaturalSelector(natSel, false);
   RandomGenerator randGen = new StockRandomGenerator();
   conf.setRandomGenerator(randGen);
   IEventManager evMan = new EventManager();
   conf.setEventManager(evMan);
   GeneticOperator mutOp = new MutationOperator(conf);
   conf.addGeneticOperator(mutOp);
   GeneticOperator croOp = new CrossoverOperator(conf);
   conf.addGeneticOperator(croOp);
   conf.setPopulationSize(7);
   assertEquals(fitFunc, conf.getFitnessFunction());
   assertEquals(natSel, conf.getNaturalSelectors(false).get(0));
   assertEquals(randGen, conf.getRandomGenerator());
   assertEquals(sample, conf.getSampleChromosome());
   assertEquals(evMan, conf.getEventManager());
   assertEquals(7, conf.getPopulationSize());
   assertEquals(2, conf.getGeneticOperators().size());
   assertEquals(mutOp, conf.getGeneticOperators().get(0));
   assertEquals(croOp, conf.getGeneticOperators().get(1));
 }
Example #3
0
  /**
   * The reproduce method will be invoked on each of the reproduction operators referenced by the
   * current Configuration object during the evolution phase. Operators are given an opportunity to
   * run in the order they are added to the Configuration. Iterates over species and determines each
   * one's number of offspring based on fitness, then passes control to subclass <code>
   * reproduce( final Configuration config,
   * final List parents, int numOffspring, List offspring )</code> method to perform specific
   * reproduction.
   *
   * @param config The current active genetic configuration.
   * @param parentSpecies <code>List</code> contains <code>Species</code> objects containing parent
   *     chromosomes from which to produce offspring.
   * @param offspring <code>List</code> contains offspring <code>ChromosomeMaterial</code> objects;
   *     this method adds new offspring to this list
   * @throws InvalidConfigurationException
   * @see ReproductionOperator#reproduce(Configuration, List, int, List)
   */
  public final void reproduce(
      final Configuration config,
      final List<Species> parentSpecies,
      List<ChromosomeMaterial> offspring)
      throws InvalidConfigurationException {
    // Calculate total fitness and number of elites
    int totalEliteCount = 0;
    // double totalSpeciesFitnessTemp = 0;
    final double[] speciesNewSizeProportional = new double[parentSpecies.size()];
    int si = 0;
    for (Species species : parentSpecies) {
      // totalSpeciesFitnessTemp += species.getAverageFitnessValue();
      totalEliteCount += species.getEliteCount();
      speciesNewSizeProportional[si++] = species.getAverageFitnessValue();
    }
    ArrayUtil.normaliseSum(speciesNewSizeProportional);

    final int targetNewOffspringCount =
        (int) Math.round((config.getPopulationSize() - totalEliteCount) * getSlice());

    // final double totalSpeciesFitness = totalSpeciesFitnessTemp;

    // Make sure species don't drastically increase in size (in some cases an oscillation can
    // develop in the size
    // of a species where the species size increases massively and then decreases massively in
    // alternate
    // generations, for a reason too long to explain here).
    si = 0;
    for (Species species : parentSpecies) {
      int newSpeciesSize =
          (int) Math.round(speciesNewSizeProportional[si] * targetNewOffspringCount);
      if (newSpeciesSize > 1.5 * species.size()) {
        // Reduce new size.
        speciesNewSizeProportional[si] /= newSpeciesSize / (species.size() * 1.45);
      }
      si++;
    }
    // Allow for adjustments just made for proportional sizes.
    ArrayUtil.normaliseSum(speciesNewSizeProportional);
    si = 0;
    for (Species species : parentSpecies) {
      species.newProportionalSize = speciesNewSizeProportional[si++];
    }

    if (targetNewOffspringCount > 0) {
      if (parentSpecies.isEmpty()) {
        throw new IllegalStateException("no parent species from which to produce offspring");
      }
      final List<ChromosomeMaterial> newOffspring =
          Collections.synchronizedList(new ArrayList<ChromosomeMaterial>(targetNewOffspringCount));

      // Reproduce from each species relative to its percentage of total fitness
      Parallel.foreach(
          parentSpecies,
          0,
          new Parallel.Operation<Species>() {
            public void perform(Species species) {
              if (!species.isEmpty()) {
                double percentFitness =
                    species.getAverageFitnessValue() / species.newProportionalSize;
                int numSpecieOffspring =
                    (int) Math.round(species.newProportionalSize * targetNewOffspringCount)
                        - species.getEliteCount();
                // Always create at least one offspring with the clone operator, or any operator if
                // it has more than 50% of the slice.
                // (Otherwise there's no point hanging on to a species).
                if (numSpecieOffspring <= 0
                    && (getSlice() > 0.5 || getClass().equals(CloneReproductionOperator.class)))
                  numSpecieOffspring = 1;

                if (numSpecieOffspring > 0)
                  try {
                    reproduce(config, species.getChromosomes(), numSpecieOffspring, newOffspring);
                  } catch (InvalidConfigurationException e) {
                    e.printStackTrace();
                  }
              }
            }
          });

      // Remove random offspring if we have too many.
      while (newOffspring.size() > targetNewOffspringCount) {
        Collections.shuffle(newOffspring, config.getRandomGenerator());
        newOffspring.remove(newOffspring.size() - 1);
      }

      for (ChromosomeMaterial c : newOffspring) {
        // Mutate if it has the same parents, otherwise according to probability.
        boolean mutate =
            c.getSecondaryParentId() != null
                && c.getPrimaryParentId().equals(c.getSecondaryParentId());
        mutate |= mutateProbability > config.getRandomGenerator().nextDouble();
        c.setShouldMutate(mutate);
      }

      // Add clones of random offspring if we don't have enough.
      while (newOffspring.size() > 0 && newOffspring.size() < targetNewOffspringCount) {
        int idx = config.getRandomGenerator().nextInt(newOffspring.size());
        ChromosomeMaterial clonee = (ChromosomeMaterial) newOffspring.get(idx);
        ChromosomeMaterial c = clonee.clone(null);
        // Clones should always be mutated.
        c.setShouldMutate(true);
        newOffspring.add(c);
      }

      offspring.addAll(newOffspring);
    }
  }
Example #4
0
  public static void main(String[] args) {
    Funid funid = new Funid();
    int executionTimes = 10;

    System.out.println("Start");

    // Map<String, List<GeneticApplication>> applicationMap = new
    // HashMap<String, List<GeneticApplication>>();
    // List<GeneticApplication> applications;

    List<Configuration> configurations = Configuration.getBasicsConfigurations();

    try {

      for (Configuration config : configurations) {
        System.out.println(config.toString());
        System.out.println("Algo 1");
        System.out.println("Execucao;Melhor;Gen. Enc.;Med. P. Ini; Med. P. Fin.;Razao;Tempo");
        for (int i = 0; i < executionTimes; i++) {
          funid.setPopulationSize(config.getPopulationSize());
          System.out.print((i + 1) + ";");

          GeneticParameters params =
              new GeneticParameters(
                  config.getCrossoverRate(),
                  config.getMutationRate(),
                  config.getPopulationSize(),
                  config.getMaxGeneration(),
                  MAXIMIZE,
                  new Elitism(),
                  new OnePointCrosserOver(),
                  new RoulleteSelector(MAXIMIZE),
                  new InversionMutator(),
                  funid);

          new GeneticApplication(funid.getInitialPopulation()).setParams(params).execute();
        }

        System.out.println(config.toString());
        System.out.println("Algo 2");
        System.out.println("Execucao;Melhor;Gen. Enc.;Med. P. Ini; Med. P. Fin.;Razao;Tempo");
        for (int i = 0; i < executionTimes; i++) {
          System.out.print((i + 1) + ";");
          GeneticParameters params =
              new GeneticParameters(
                  config.getCrossoverRate(),
                  config.getMutationRate(),
                  config.getPopulationSize(),
                  config.getMaxGeneration(),
                  MAXIMIZE,
                  new Generational(),
                  new TwoPointsCrosserOver(),
                  new RoulleteSelector(MAXIMIZE),
                  new InversionMutator(),
                  funid);

          new GeneticApplication(funid.getInitialPopulation()).setParams(params).execute();
        }
      }
    } catch (IOException e) {
      e.printStackTrace();
    }
  }
  /**
   * Evolves the population of chromosomes within a genotype. This will execute all of the genetic
   * operators added to the present active configuration and then invoke the natural selector to
   * choose which chromosomes will be included in the next generation population.
   *
   * @param a_pop the population to evolve
   * @param a_conf the configuration to use for evolution
   * @return evolved population
   * @author Klaus Meffert
   * @since 3.2
   */
  public Population evolve(Population a_pop, Configuration a_conf) {
    Population pop = a_pop;
    int originalPopSize = a_conf.getPopulationSize();
    boolean monitorActive = a_conf.getMonitor() != null;
    IChromosome fittest = null;
    // If first generation: Set age to one to allow genetic operations,
    // see CrossoverOperator for an illustration.
    // ----------------------------------------------------------------
    if (a_conf.getGenerationNr() == 0) {
      int size = pop.size();
      for (int i = 0; i < size; i++) {
        IChromosome chrom = pop.getChromosome(i);
        chrom.increaseAge();
      }
    } else {
      // Select fittest chromosome in case it should be preserved and we are
      // not in the very first generation.
      // -------------------------------------------------------------------
      if (a_conf.isPreserveFittestIndividual()) {
        /** @todo utilize jobs. In pop do also utilize jobs, especially for fitness computation */
        fittest = pop.determineFittestChromosome(0, pop.size() - 1);
      }
    }
    if (a_conf.getGenerationNr() > 0) {
      // Adjust population size to configured size (if wanted).
      // Theoretically, this should be done at the end of this method.
      // But for optimization issues it is not. If it is the last call to
      // evolve() then the resulting population possibly contains more
      // chromosomes than the wanted number. But this is no bad thing as
      // more alternatives mean better chances having a fit candidate.
      // If it is not the last call to evolve() then the next call will
      // ensure the correct population size by calling keepPopSizeConstant.
      // ------------------------------------------------------------------
      keepPopSizeConstant(pop, a_conf);
    }
    // Ensure fitness value of all chromosomes is udpated.
    // ---------------------------------------------------
    if (monitorActive) {
      // Monitor that fitness value of chromosomes is being updated.
      // -----------------------------------------------------------
      a_conf
          .getMonitor()
          .event(
              IEvolutionMonitor.MONITOR_EVENT_BEFORE_UPDATE_CHROMOSOMES1,
              a_conf.getGenerationNr(),
              new Object[] {pop});
    }
    updateChromosomes(pop, a_conf);
    if (monitorActive) {
      // Monitor that fitness value of chromosomes is being updated.
      // -----------------------------------------------------------
      a_conf
          .getMonitor()
          .event(
              IEvolutionMonitor.MONITOR_EVENT_AFTER_UPDATE_CHROMOSOMES1,
              a_conf.getGenerationNr(),
              new Object[] {pop});
    }
    // Apply certain NaturalSelectors before GeneticOperators will be executed.
    // ------------------------------------------------------------------------
    pop = applyNaturalSelectors(a_conf, pop, true);
    // Execute all of the Genetic Operators.
    // -------------------------------------
    applyGeneticOperators(a_conf, pop);
    // Reset fitness value of genetically operated chromosomes.
    // Normally, this should not be necessary as the Chromosome class
    // initializes each newly created chromosome with
    // FitnessFunction.NO_FITNESS_VALUE. But who knows which Chromosome
    // implementation is used...
    // ----------------------------------------------------------------
    int currentPopSize = pop.size();
    for (int i = originalPopSize; i < currentPopSize; i++) {
      IChromosome chrom = pop.getChromosome(i);
      chrom.setFitnessValueDirectly(FitnessFunction.NO_FITNESS_VALUE);
      // Mark chromosome as new-born.
      // ----------------------------
      chrom.resetAge();
      // Mark chromosome as being operated on.
      // -------------------------------------
      chrom.increaseOperatedOn();
    }
    // Increase age of all chromosomes which are not modified by genetic
    // operations.
    // -----------------------------------------------------------------
    int size = Math.min(originalPopSize, currentPopSize);
    for (int i = 0; i < size; i++) {
      IChromosome chrom = pop.getChromosome(i);
      chrom.increaseAge();
      // Mark chromosome as not being operated on.
      // -----------------------------------------
      chrom.resetOperatedOn();
    }
    // If a bulk fitness function has been provided, call it.
    // ------------------------------------------------------
    BulkFitnessFunction bulkFunction = a_conf.getBulkFitnessFunction();
    if (bulkFunction != null) {
      if (monitorActive) {
        // Monitor that bulk fitness will be called for evaluation.
        // --------------------------------------------------------
        a_conf
            .getMonitor()
            .event(
                IEvolutionMonitor.MONITOR_EVENT_BEFORE_BULK_EVAL,
                a_conf.getGenerationNr(),
                new Object[] {bulkFunction, pop});
      }
      /** @todo utilize jobs: bulk fitness function is not so important for a prototype! */
      bulkFunction.evaluate(pop);
      if (monitorActive) {
        // Monitor that bulk fitness has been called for evaluation.
        // ---------------------------------------------------------
        a_conf
            .getMonitor()
            .event(
                IEvolutionMonitor.MONITOR_EVENT_AFTER_BULK_EVAL,
                a_conf.getGenerationNr(),
                new Object[] {bulkFunction, pop});
      }
    }
    // Ensure fitness value of all chromosomes is udpated.
    // ---------------------------------------------------
    if (monitorActive) {
      // Monitor that fitness value of chromosomes is being updated.
      // -----------------------------------------------------------
      a_conf
          .getMonitor()
          .event(
              IEvolutionMonitor.MONITOR_EVENT_BEFORE_UPDATE_CHROMOSOMES2,
              a_conf.getGenerationNr(),
              new Object[] {pop});
    }
    updateChromosomes(pop, a_conf);
    if (monitorActive) {
      // Monitor that fitness value of chromosomes is being updated.
      // -----------------------------------------------------------
      a_conf
          .getMonitor()
          .event(
              IEvolutionMonitor.MONITOR_EVENT_AFTER_UPDATE_CHROMOSOMES2,
              a_conf.getGenerationNr(),
              new Object[] {pop});
    }
    // Apply certain NaturalSelectors after GeneticOperators have been applied.
    // ------------------------------------------------------------------------
    pop = applyNaturalSelectors(a_conf, pop, false);
    // Fill up population randomly if size dropped below specified percentage
    // of original size.
    // ----------------------------------------------------------------------
    if (a_conf.getMinimumPopSizePercent() > 0) {
      int sizeWanted = a_conf.getPopulationSize();
      int popSize;
      int minSize = (int) Math.round(sizeWanted * (double) a_conf.getMinimumPopSizePercent() / 100);
      popSize = pop.size();
      if (popSize < minSize) {
        IChromosome newChrom;
        IChromosome sampleChrom = a_conf.getSampleChromosome();
        Class sampleChromClass = sampleChrom.getClass();
        IInitializer chromIniter =
            a_conf.getJGAPFactory().getInitializerFor(sampleChrom, sampleChromClass);
        while (pop.size() < minSize) {
          try {
            /**
             * @todo utilize jobs as initialization may be time-consuming as invalid combinations
             *     may have to be filtered out
             */
            newChrom = (IChromosome) chromIniter.perform(sampleChrom, sampleChromClass, null);
            if (monitorActive) {
              // Monitor that fitness value of chromosomes is being updated.
              // -----------------------------------------------------------
              a_conf
                  .getMonitor()
                  .event(
                      IEvolutionMonitor.MONITOR_EVENT_BEFORE_ADD_CHROMOSOME,
                      a_conf.getGenerationNr(),
                      new Object[] {pop, newChrom});
            }
            pop.addChromosome(newChrom);
          } catch (Exception ex) {
            throw new RuntimeException(ex);
          }
        }
      }
    }
    IChromosome newFittest = reAddFittest(pop, fittest);
    if (monitorActive && newFittest != null) {
      // Monitor that fitness value of chromosomes is being updated.
      // -----------------------------------------------------------
      a_conf
          .getMonitor()
          .event(
              IEvolutionMonitor.MONITOR_EVENT_READD_FITTEST,
              a_conf.getGenerationNr(),
              new Object[] {pop, fittest});
    }

    // Increase number of generations.
    // -------------------------------
    a_conf.incrementGenerationNr();
    // Fire an event to indicate we've performed an evolution.
    // -------------------------------------------------------
    m_lastPop = pop;
    m_lastConf = a_conf;
    a_conf
        .getEventManager()
        .fireGeneticEvent(new GeneticEvent(GeneticEvent.GENOTYPE_EVOLVED_EVENT, this));
    return pop;
  }
 /**
  * @throws Exception
  * @author Klaus Meffert
  * @since 2.6
  */
 public void testToString_1() throws Exception {
   Configuration conf = new ConfigurationForTesting();
   conf.getGeneticOperators().clear();
   conf.getNaturalSelectors(false).clear();
   conf.getNaturalSelectors(true).clear();
   privateAccessor.setField(conf, "m_eventManager", null);
   String s = trimString(conf.toString());
   String eventmgr = conf.S_NONE;
   String genops = conf.S_NONE;
   // natural selectors (pre)
   String natselsPre = conf.S_NONE;
   // natural selectors (post)
   String natselsPost = conf.S_NONE;
   assertEquals(
       trimString(
           conf.S_CONFIGURATION
               + ":"
               + conf.S_CONFIGURATION_NAME
               + ":"
               + conf.getName()
               + " "
               + conf.S_POPULATION_SIZE
               + ":"
               + conf.getPopulationSize()
               + " "
               + conf.S_MINPOPSIZE
               + ":"
               + conf.getMinimumPopSizePercent()
               + " "
               + conf.S_CHROMOSOME_SIZE
               + ":"
               + conf.getChromosomeSize()
               + " "
               + conf.S_SAMPLE_CHROM
               + ":"
               + conf.S_SIZE
               + ":"
               + conf.getSampleChromosome().size()
               + " "
               + conf.S_TOSTRING
               + ":"
               + conf.getSampleChromosome().toString()
               + " "
               + conf.S_RANDOM_GENERATOR
               + ":"
               + conf.getRandomGenerator().getClass().getName()
               + " "
               + conf.S_EVENT_MANAGER
               + ":"
               + eventmgr
               + " "
               + conf.S_CONFIGURATION_HANDLER
               + ":"
               + conf.getConfigurationHandler().getName()
               + " "
               + conf.S_FITNESS_FUNCTION
               + ":"
               + conf.getFitnessFunction().getClass().getName()
               + " "
               + conf.S_FITNESS_EVALUATOR
               + ":"
               + conf.getFitnessEvaluator().getClass().getName()
               + " "
               + conf.S_GENETIC_OPERATORS
               + ":"
               + genops
               + " "
               + conf.S_NATURAL_SELECTORS
               + "("
               + conf.S_PRE
               + ")"
               + ":"
               + natselsPre
               + " "
               + conf.S_NATURAL_SELECTORS
               + "("
               + conf.S_POST
               + ")"
               + ":"
               + natselsPost
               + " "
           //                            + conf.S_POPCONSTANT_SELECTOR + ":"
           //                            + "null" + " "
           ),
       s);
 }
 /**
  * @throws Exception
  * @author Klaus Meffert
  * @since 2.4
  */
 public void testToString_0() throws Exception {
   Configuration conf = new ConfigurationForTesting();
   conf.addGeneticOperator(new MutationOperator(conf));
   conf.addNaturalSelector(new WeightedRouletteSelector(conf), true);
   conf.addNaturalSelector(new WeightedRouletteSelector(conf), false);
   conf.addNaturalSelector(new BestChromosomesSelector(conf), false);
   String s = trimString(conf.toString());
   String eventmgr =
       conf.getEventManager() != null ? conf.getEventManager().getClass().getName() : conf.S_NONE;
   String genops = "";
   if (conf.getGeneticOperators().size() < 1) {
     genops = conf.S_NONE;
   } else {
     for (int i = 0; i < conf.getGeneticOperators().size(); i++) {
       if (i > 0) {
         genops += "; ";
       }
       genops += conf.getGeneticOperators().get(i).getClass().getName();
       ;
     }
   }
   // natural selectors (pre)
   String natselsPre = "";
   int natsize = conf.getNaturalSelectors(true).size();
   if (natsize < 1) {
     natselsPre = conf.S_NONE;
   } else {
     for (int i = 0; i < natsize; i++) {
       if (i > 0) {
         natselsPre += "; ";
       }
       natselsPre += " " + conf.getNaturalSelectors(true).get(i).getClass().getName();
     }
   }
   // natural selectors (post)
   String natselsPost = "";
   natsize = conf.getNaturalSelectors(false).size();
   if (natsize < 1) {
     natselsPost = conf.S_NONE;
   } else {
     for (int i = 0; i < natsize; i++) {
       if (i > 0) {
         natselsPost += "; ";
       }
       natselsPost += " " + conf.getNaturalSelectors(false).get(i).getClass().getName();
     }
   }
   assertEquals(
       trimString(
           conf.S_CONFIGURATION
               + ":"
               + conf.S_CONFIGURATION_NAME
               + ":"
               + conf.getName()
               + " "
               + conf.S_POPULATION_SIZE
               + ":"
               + conf.getPopulationSize()
               + " "
               + conf.S_MINPOPSIZE
               + ":"
               + conf.getMinimumPopSizePercent()
               + " "
               + conf.S_CHROMOSOME_SIZE
               + ":"
               + conf.getChromosomeSize()
               + " "
               + conf.S_SAMPLE_CHROM
               + ":"
               + conf.S_SIZE
               + ":"
               + conf.getSampleChromosome().size()
               + " "
               + conf.S_TOSTRING
               + ":"
               + conf.getSampleChromosome().toString()
               + " "
               + conf.S_RANDOM_GENERATOR
               + ":"
               + conf.getRandomGenerator().getClass().getName()
               + " "
               + conf.S_EVENT_MANAGER
               + ":"
               + eventmgr
               + " "
               + conf.S_CONFIGURATION_HANDLER
               + ":"
               + conf.getConfigurationHandler().getName()
               + " "
               + conf.S_FITNESS_FUNCTION
               + ":"
               + conf.getFitnessFunction().getClass().getName()
               + " "
               + conf.S_FITNESS_EVALUATOR
               + ":"
               + conf.getFitnessEvaluator().getClass().getName()
               + " "
               + conf.S_GENETIC_OPERATORS
               + ":"
               + genops
               + " "
               + conf.S_NATURAL_SELECTORS
               + "("
               + conf.S_PRE
               + ")"
               + ":"
               + natselsPre
               + " "
               + conf.S_NATURAL_SELECTORS
               + "("
               + conf.S_POST
               + ")"
               + ":"
               + natselsPost
               + " "
           //                            + conf.S_POPCONSTANT_SELECTOR + ":"
           //                            + "null" + " "
           ),
       s);
 }