@Override public ExampleSet apply(ExampleSet exampleSet) throws OperatorException { // creating kernel and settings from Parameters int k = Math.min(100, exampleSet.getAttributes().size() * 2); int size = exampleSet.size(); switch (getParameterAsInt(PARAMETER_SAMPLE)) { case SAMPLE_ABSOLUTE: size = getParameterAsInt(PARAMETER_SAMPLE_SIZE); break; case SAMPLE_RELATIVE: size = (int) Math.round(exampleSet.size() * getParameterAsDouble(PARAMETER_SAMPLE_RATIO)); break; } DistanceMeasure distanceMeasure = new EuclideanDistance(); distanceMeasure.init(exampleSet); // finding farthest and nearest example to mean Vector double[] meanVector = getMeanVector(exampleSet); Candidate min = new Candidate(meanVector, Double.POSITIVE_INFINITY, 0); Candidate max = new Candidate(meanVector, Double.NEGATIVE_INFINITY, 0); int i = 0; for (Example example : exampleSet) { double[] exampleValues = getExampleValues(example); Candidate current = new Candidate( exampleValues, Math.abs(distanceMeasure.calculateDistance(meanVector, exampleValues)), i); if (current.compareTo(min) < 0) { min = current; } if (current.compareTo(max) > 0) { max = current; } i++; } ArrayList<Candidate> recentlySelected = new ArrayList<Candidate>(10); int[] partition = new int[exampleSet.size()]; int numberOfSelectedExamples = 2; recentlySelected.add(min); recentlySelected.add(max); partition[min.getExampleIndex()] = 1; partition[max.getExampleIndex()] = 1; double[] minimalDistances = new double[exampleSet.size()]; Arrays.fill(minimalDistances, Double.POSITIVE_INFINITY); // running now through examples, checking for smallest distance to one of the candidates while (numberOfSelectedExamples < size) { TreeSet<Candidate> candidates = new TreeSet<Candidate>(); i = 0; // check distance only for candidates recently selected. for (Example example : exampleSet) { // if example not has been selected allready if (partition[i] == 0) { double[] exampleValues = getExampleValues(example); for (Candidate candidate : recentlySelected) { minimalDistances[i] = Math.min( minimalDistances[i], Math.abs( distanceMeasure.calculateDistance(exampleValues, candidate.getValues()))); } Candidate newCandidate = new Candidate(exampleValues, minimalDistances[i], i); candidates.add(newCandidate); if (candidates.size() > k) { Iterator<Candidate> iterator = candidates.iterator(); iterator.next(); iterator.remove(); } } i++; } // clearing recently selected since now new ones will be selected recentlySelected.clear(); // now running in descending order through candidates and adding to selected // IM: descendingIterator() is not available in Java versions less than 6 !!! // IM: Bad workaround for now by adding all candidates into a list and using a listIterator() // and hasPrevious... /* Iterator<Candidate> descendingIterator = candidates.descendingIterator(); while (descendingIterator.hasNext() && numberOfSelectedExamples < desiredNumber) { Candidate candidate = descendingIterator.next(); */ List<Candidate> reverseCandidateList = new LinkedList<Candidate>(); Iterator<Candidate> it = candidates.iterator(); while (it.hasNext()) { reverseCandidateList.add(it.next()); } ListIterator<Candidate> lit = reverseCandidateList.listIterator(reverseCandidateList.size() - 1); while (lit.hasPrevious()) { Candidate candidate = lit.previous(); // IM: end of workaround boolean existSmallerDistance = false; Iterator<Candidate> addedIterator = recentlySelected.iterator(); // test if a distance to recently selected is smaller than previously calculated minimal // distance // if one exists: This is not selected while (addedIterator.hasNext()) { double distance = Math.abs( distanceMeasure.calculateDistance( addedIterator.next().getValues(), candidate.getValues())); existSmallerDistance = existSmallerDistance || distance < candidate.getDistance(); } if (!existSmallerDistance) { recentlySelected.add(candidate); partition[candidate.getExampleIndex()] = 1; numberOfSelectedExamples++; } else break; } } // building new exampleSet containing only Examples with indices in selectedExamples SplittedExampleSet sample = new SplittedExampleSet(exampleSet, new Partition(partition, 2)); sample.selectSingleSubset(1); return sample; }
public int compareTo(Candidate o) { return Double.compare(this.distance, o.getDistance()); }