/** * Classifies an instance w.r.t. the partitions found. It applies a naive min-distance algorithm. * * @param instance the instance to classify * @return the cluster that contains the nearest point to the instance */ public int clusterInstance(Instance instance) throws java.lang.Exception { DoubleMatrix1D u = DoubleFactory1D.dense.make(instance.toDoubleArray()); double min_dist = Double.POSITIVE_INFINITY; int c = -1; for (int i = 0; i < v.rows(); i++) { double dist = distnorm2(u, v.viewRow(i)); if (dist < min_dist) { c = cluster[i]; min_dist = dist; } } return c; }
public void buildClusterer(ArrayList<String> seqDB, double[][] sm) { seqList = seqDB; this.setSimMatrix(sm); Attribute seqString = new Attribute("sequence", (FastVector) null); FastVector attrInfo = new FastVector(); attrInfo.addElement(seqString); Instances data = new Instances("data", attrInfo, 0); for (int i = 0; i < seqList.size(); i++) { Instance currentInst = new Instance(1); currentInst.setDataset(data); currentInst.setValue(0, seqList.get(i)); data.add(currentInst); } try { buildClusterer(data); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } }
public JSONArray Cluster(String wekaFilePath, int clusterNum) throws Exception { File inputFile = new File(wekaFilePath); ArffLoader arf = new ArffLoader(); arf.setFile(inputFile); Instances originIns = arf.getDataSet(); Instances insTest = new Instances(originIns); insTest.deleteStringAttributes(); int totalNum = insTest.numInstances(); // SimpleKMeans sm = new SimpleKMeans(); EM em = new EM(); em.setNumClusters(clusterNum); MakeDensityBasedClusterer sm = new MakeDensityBasedClusterer(); sm.setClusterer(em); sm.buildClusterer(insTest); System.out.println("totalNum:" + insTest.numInstances()); System.out.println("============================"); System.out.println(sm.toString()); Map<Integer, ArrayList<String>> result = new HashMap<Integer, ArrayList<String>>(); for (int i = 0; i < clusterNum; i++) { result.put(i, new ArrayList<String>()); } for (int i = 0; i < totalNum; i++) { Instance ins = originIns.instance(i); String word = ins.stringValue(0); Instance tempIns = new Instance(ins); tempIns.deleteAttributeAt(0); int cluster = sm.clusterInstance(tempIns); result.get(cluster).add(word); } // print the result ArrayList<String> words = new ArrayList<String>(); JSONArray keyWords = new JSONArray(); for (int k : result.keySet()) { words = result.get(k); PriorityQueue<MyTerm> clusterQueue = new PriorityQueue<MyTerm>(1, MyTermCompare); for (int i = 0; i < words.size(); i++) { String s = words.get(i); assert linkMap.containsKey(s); int freq = linkMap.get(s).totalFreq; clusterQueue.add(linkMap.get(s)); words.set(i, "(" + s + ":" + freq + ")"); } JSONArray clusterArray = new JSONArray(); int num = clusterQueue.size() / 10 + 1; // 5% int totalFreq = 0; int totalLength = 0; for (int i = 0; i < num && !clusterQueue.isEmpty(); ) { JSONObject mem = new JSONObject(); MyTerm myTerm = clusterQueue.poll(); String word = myTerm.originTrem.text(); if (word.length() == 1) { continue; } mem.put("text", word); mem.put("freq", myTerm.totalFreq); clusterArray.put(mem); i++; totalFreq += myTerm.totalFreq; totalLength += word.length(); } double averFreq = totalFreq * 1.0 / num; double averLength = totalLength * 1.0 / num; int count = 0; while (!clusterQueue.isEmpty() && count < num) { MyTerm myTerm = clusterQueue.poll(); String word = myTerm.originTrem.text(); int freq = myTerm.totalFreq; int times = (int) (word.length() / averFreq) + 1; if (freq > averFreq / times) { JSONObject mem = new JSONObject(); mem.put("text", word); mem.put("freq", freq); mem.put("extra", true); clusterArray.put(mem); } } keyWords.put(clusterArray); System.out.println( "cluster" + k + ":" + words.size() + ":\t" + (int) (words.size() * 1.0 / totalNum * 100)); if (result.get(k).size() < 100) { System.out.println(result.get(k)); } } // System.out.println("errorNum:"+errorNum); return keyWords; }