@Test public void testBasics_1() { // Simple domain mapping Assert.assertArrayEquals(a(0, 1, 2, 3), Utils.mapping(a(0, 1, 2, 3))); Assert.assertArrayEquals(a(0, 1, 2, -1, 3), Utils.mapping(a(0, 1, 2, 4))); Assert.assertArrayEquals(a(0, -1, 1), Utils.mapping(a(-1, 1))); Assert.assertArrayEquals(a(0, -1, 1, -1, 2), Utils.mapping(a(-1, 1, 3))); }
@Test public void testBasics_2() { Assert.assertArrayEquals( a(2, 30, 400, 5000), Utils.compose(Utils.mapping(a(0, 1, 2, 3)), a(2, 30, 400, 5000))); Assert.assertArrayEquals( a(2, 30, 400, -1, 5000), Utils.compose(Utils.mapping(a(0, 1, 2, 4)), a(2, 30, 400, 5000))); Assert.assertArrayEquals( a(2, -1, 30), Utils.compose(Utils.mapping(a(-1, 1)), a(2, 30, 400, 5000))); Assert.assertArrayEquals( a(2, -1, 30, -1, 400), Utils.compose(Utils.mapping(a(-1, 1, 3)), a(2, 30, 400, 5000))); }
void testModelAdaptation(String train, String test, PrepData dprep, boolean exactAdaptation) { DRFModel model = null; Frame frTest = null; Frame frTrain = null; Key trainKey = Key.make("train.hex"); Key testKey = Key.make("test.hex"); Frame[] frAdapted = null; try { // Prepare a simple model frTrain = parseFrame(trainKey, train); model = runDRF(frTrain, dprep); // Load test dataset - test data contains input columns matching train data, // BUT each input requires adaptation. Moreover, test data contains additional columns // containing correct value mapping. frTest = parseFrame(testKey, test); Assert.assertEquals( "TEST CONF ERROR: The test dataset should contain 2*<number of input columns>+1!", 2 * (frTrain.numCols() - 1) + 1, frTest.numCols()); // Adapt test dataset frAdapted = model.adapt(frTest, exactAdaptation); // do/do not perform translation to enums Assert.assertEquals("Adapt method should return two frames", 2, frAdapted.length); Assert.assertEquals( "Test expects that all columns in test dataset has to be adapted", dprep.needAdaptation(frTrain), frAdapted[1].numCols()); // Compare vectors Frame adaptedFrame = frAdapted[0]; // System.err.println(frTest.toStringAll()); // System.err.println(adaptedFrame.toStringAll()); for (int av = 0; av < frTrain.numCols() - 1; av++) { int ev = av + frTrain.numCols(); Vec actV = adaptedFrame.vecs()[av]; Vec expV = frTest.vecs()[ev]; Assert.assertEquals( "Different number of rows in test vectors", expV.length(), actV.length()); for (long r = 0; r < expV.length(); r++) { if (expV.isNA(r)) Assert.assertTrue( "Badly adapted vector - expected NA! Col: " + av + ", row: " + r, actV.isNA(r)); else { Assert.assertTrue( "Badly adapted vector - expected value but get NA! Col: " + av + ", row: " + r, !actV.isNA(r)); Assert.assertEquals( "Badly adapted vector - wrong values! Col: " + av + ", row: " + r, expV.at8(r), actV.at8(r)); } } } } finally { // Test cleanup if (model != null) UKV.remove(model._selfKey); if (frTrain != null) frTrain.remove(); UKV.remove(trainKey); if (frTest != null) frTest.remove(); UKV.remove(testKey); // Remove adapted vectors which were saved into KV-store, rest of vectors are remove by // frTest.remove() if (frAdapted != null) frAdapted[1].remove(); } }