@Override public Value lazyArrayChunk(final Key key) { final Key arykey = ValueArray.getArrayKey(key); // From the base file key final long off = (_iceRoot != null) ? 0 : ValueArray.getChunkOffset(key); // The offset final Path p = (_iceRoot != null) ? new Path(_iceRoot, getIceName(key, (byte) 'V')) : new Path(arykey.toString()); final Size sz = new Size(); run( new Callable() { @Override public Object call() throws Exception { FileSystem fs = FileSystem.get(p.toUri(), CONF); long rem = fs.getFileStatus(p).getLen() - off; sz._value = (rem > ValueArray.CHUNK_SZ * 2) ? (int) ValueArray.CHUNK_SZ : (int) rem; return null; } }, true, 0); Value val = new Value(key, sz._value, Value.HDFS); val.setdsk(); // But its already on disk. return val; }
private static void addFolder(FileSystem fs, Path p, JsonArray succeeded, JsonArray failed) { try { if (fs == null) return; for (FileStatus file : fs.listStatus(p)) { Path pfs = file.getPath(); if (file.isDir()) { addFolder(fs, pfs, succeeded, failed); } else { Key k = Key.make(pfs.toString()); long size = file.getLen(); Value val = null; if (pfs.getName().endsWith(Extensions.JSON)) { JsonParser parser = new JsonParser(); JsonObject json = parser.parse(new InputStreamReader(fs.open(pfs))).getAsJsonObject(); JsonElement v = json.get(Constants.VERSION); if (v == null) throw new RuntimeException("Missing version"); JsonElement type = json.get(Constants.TYPE); if (type == null) throw new RuntimeException("Missing type"); Class c = Class.forName(type.getAsString()); OldModel model = (OldModel) c.newInstance(); model.fromJson(json); } else if (pfs.getName().endsWith(Extensions.HEX)) { // Hex file? FSDataInputStream s = fs.open(pfs); int sz = (int) Math.min(1L << 20, size); // Read up to the 1st meg byte[] mem = MemoryManager.malloc1(sz); s.readFully(mem); // Convert to a ValueArray (hope it fits in 1Meg!) ValueArray ary = new ValueArray(k, 0).read(new AutoBuffer(mem)); val = new Value(k, ary, Value.HDFS); } else if (size >= 2 * ValueArray.CHUNK_SZ) { val = new Value( k, new ValueArray(k, size), Value.HDFS); // ValueArray byte wrapper over a large file } else { val = new Value(k, (int) size, Value.HDFS); // Plain Value val.setdsk(); } DKV.put(k, val); Log.info("PersistHdfs: DKV.put(" + k + ")"); JsonObject o = new JsonObject(); o.addProperty(Constants.KEY, k.toString()); o.addProperty(Constants.FILE, pfs.toString()); o.addProperty(Constants.VALUE_SIZE, file.getLen()); succeeded.add(o); } } } catch (Exception e) { Log.err(e); JsonObject o = new JsonObject(); o.addProperty(Constants.FILE, p.toString()); o.addProperty(Constants.ERROR, e.getMessage()); failed.add(o); } }
@Override public void store(Value v) { // Should be used only if ice goes to HDFS assert this == getIce(); assert !v.isPersisted(); byte[] m = v.memOrLoad(); assert (m == null || m.length == v._max); // Assert not saving partial files store(new Path(_iceRoot, getIceName(v)), m); v.setdsk(); // Set as write-complete to disk }
public void onException(Throwable ex) { UKV.remove(dest()); Value v = DKV.get(progressKey()); if (v != null) { ChunkProgress p = v.get(); p = p.error(ex.getMessage()); DKV.put(progressKey(), p); } cancel(ex); }
/** * Initialize the ModelBuilder, validating all arguments and preparing the training frame. This * call is expected to be overridden in the subclasses and each subclass will start with * "super.init();". This call is made by the front-end whenever the GUI is clicked, and needs to * be fast; heavy-weight prep needs to wait for the trainModel() call. * * <p>Validate the requested ntrees; precompute actual ntrees. Validate the number of classes to * predict on; validate a checkpoint. */ @Override public void init(boolean expensive) { super.init(expensive); if (H2O.ARGS.client && _parms._build_tree_one_node) error("_build_tree_one_node", "Cannot run on a single node in client mode"); if (_vresponse != null) _vresponse_key = _vresponse._key; if (_response != null) _response_key = _response._key; if (_nclass > SharedTreeModel.SharedTreeParameters.MAX_SUPPORTED_LEVELS) error("_nclass", "Too many levels in response column!"); if (_parms._min_rows < 0) error("_min_rows", "Requested min_rows must be greater than 0"); if (_parms._ntrees < 0 || _parms._ntrees > 100000) error("_ntrees", "Requested ntrees must be between 1 and 100000"); _ntrees = _parms._ntrees; // Total trees in final model if (_parms._checkpoint) { // Asking to continue from checkpoint? Value cv = DKV.get(_parms._model_id); if (cv != null) { // Look for prior model M checkpointModel = cv.get(); if (_parms._ntrees < checkpointModel._output._ntrees + 1) error( "_ntrees", "Requested ntrees must be between " + checkpointModel._output._ntrees + 1 + " and 100000"); _ntrees = _parms._ntrees - checkpointModel._output._ntrees; // Needed trees } } if (_parms._nbins <= 1) error("_nbins", "_nbins must be > 1."); if (_parms._nbins >= 1 << 16) error("_nbins", "_nbins must be < " + (1 << 16)); if (_parms._nbins_cats <= 1) error("_nbins_cats", "_nbins_cats must be > 1."); if (_parms._nbins_cats >= 1 << 16) error("_nbins_cats", "_nbins_cats must be < " + (1 << 16)); if (_parms._max_depth <= 0) error("_max_depth", "_max_depth must be > 0."); if (_parms._min_rows <= 0) error("_min_rows", "_min_rows must be > 0."); if (_parms._distribution == Distributions.Family.tweedie) { _parms._distribution.tweedie.p = _parms._tweedie_power; } if (_train != null) { double sumWeights = _train.numRows() * (hasWeightCol() ? _train.vec(_parms._weights_column).mean() : 1); if (sumWeights < 2 * _parms._min_rows) // Need at least 2*min_rows weighted rows to split even once error( "_min_rows", "The dataset size is too small to split for min_rows=" + _parms._min_rows + ": must have at least " + 2 * _parms._min_rows + " (weighted) rows, but have only " + sumWeights + "."); } if (_train != null) _ncols = _train.numCols() - 1 - numSpecialCols(); }
/** * Initialize the ModelBuilder, validating all arguments and preparing the training frame. This * call is expected to be overridden in the subclasses and each subclass will start with * "super.init();". This call is made by the front-end whenever the GUI is clicked, and needs to * be fast; heavy-weight prep needs to wait for the trainModel() call. * * <p>Validate the requested ntrees; precompute actual ntrees. Validate the number of classes to * predict on; validate a checkpoint. */ @Override public void init(boolean expensive) { super.init(expensive); if (H2O.ARGS.client && _parms._build_tree_one_node) error("_build_tree_one_node", "Cannot run on a single node in client mode"); if (_vresponse != null) _vresponse_key = _vresponse._key; if (_response != null) _response_key = _response._key; if (_parms._min_rows < 0) error("_min_rows", "Requested min_rows must be greater than 0"); if (_parms._ntrees < 0 || _parms._ntrees > MAX_NTREES) error("_ntrees", "Requested ntrees must be between 1 and " + MAX_NTREES); _ntrees = _parms._ntrees; // Total trees in final model if (_parms.hasCheckpoint()) { // Asking to continue from checkpoint? Value cv = DKV.get(_parms._checkpoint); if (cv != null) { // Look for prior model M checkpointModel = cv.get(); try { _parms.validateWithCheckpoint(checkpointModel._parms); } catch (H2OIllegalArgumentException e) { error(e.values.get("argument").toString(), e.values.get("value").toString()); } if (_parms._ntrees < checkpointModel._output._ntrees + 1) error( "_ntrees", "If checkpoint is specified then requested ntrees must be higher than " + (checkpointModel._output._ntrees + 1)); // Compute number of trees to build for this checkpoint _ntrees = _parms._ntrees - checkpointModel._output._ntrees; // Needed trees } } if (_parms._nbins <= 1) error("_nbins", "_nbins must be > 1."); if (_parms._nbins >= 1 << 16) error("_nbins", "_nbins must be < " + (1 << 16)); if (_parms._nbins_cats <= 1) error("_nbins_cats", "_nbins_cats must be > 1."); if (_parms._nbins_cats >= 1 << 16) error("_nbins_cats", "_nbins_cats must be < " + (1 << 16)); if (_parms._max_depth <= 0) error("_max_depth", "_max_depth must be > 0."); if (_parms._min_rows <= 0) error("_min_rows", "_min_rows must be > 0."); if (_train != null) { double sumWeights = _train.numRows() * (hasWeightCol() ? _train.vec(_parms._weights_column).mean() : 1); if (sumWeights < 2 * _parms._min_rows) // Need at least 2*min_rows weighted rows to split even once error( "_min_rows", "The dataset size is too small to split for min_rows=" + _parms._min_rows + ": must have at least " + 2 * _parms._min_rows + " (weighted) rows, but have only " + sumWeights + "."); } if (_train != null) _ncols = _train.numCols() - 1 - numSpecialCols(); }
@Override public void delete(final Value v) { assert this == getIce(); assert !v.isPersisted(); // Upper layers already cleared out run( new Callable() { @Override public Object call() throws Exception { Path p = new Path(_iceRoot, getIceName(v)); FileSystem fs = FileSystem.get(p.toUri(), CONF); fs.delete(p, true); if (v.isArray()) { // Also nuke directory if the top-level ValueArray dies p = new Path(_iceRoot, getIceDirectory(v._key)); fs = FileSystem.get(p.toUri(), CONF); fs.delete(p, true); } return null; } }, false, 0); }