Ejemplo n.º 1
0
  private void makeMultidimInner(
      NetcdfDataset ds, TableConfig parentTable, TableConfig childTable) {
    Dimension parentDim = ds.findDimension(parentTable.dimName);
    Dimension childDim = ds.findDimension(childTable.innerName);

    // divide up the variables between the parent and the child
    List<String> obsVars;
    List<Variable> vars = ds.getVariables();
    List<String> parentVars = new ArrayList<>(vars.size());
    obsVars = new ArrayList<>(vars.size());
    for (Variable orgV : vars) {
      if (orgV instanceof Structure) continue;

      Dimension dim0 = orgV.getDimension(0);
      if ((dim0 != null) && dim0.equals(parentDim)) {
        if ((orgV.getRank() == 1)
            || ((orgV.getRank() == 2) && orgV.getDataType() == DataType.CHAR)) {
          parentVars.add(orgV.getShortName());
        } else {
          Dimension dim1 = orgV.getDimension(1);
          if ((dim1 != null) && dim1.equals(childDim)) obsVars.add(orgV.getShortName());
        }
      }
    }
    parentTable.vars = parentVars;
    childTable.vars = obsVars;
  }
Ejemplo n.º 2
0
 private boolean hasAxisType(NetcdfDataset ds, AxisType a) {
   List<Variable> varList = ds.getVariables();
   for (Variable v : varList) {
     String axisType = ds.findAttValueIgnoreCase(v, "CoordinateAxisType", null);
     if ((axisType != null) && axisType.equals(a.toString())) return true;
   }
   return false;
 }
Ejemplo n.º 3
0
  public void setDataset(NetcdfDataset ds) {
    this.ds = ds;
    parseInfo = new Formatter();

    List<VariableBean> beanList = new ArrayList<>();
    List<AxisBean> axisList = new ArrayList<>();
    setVariables(ds.getVariables(), axisList, beanList);

    varTable.setBeans(beanList);
    axisTable.setBeans(axisList);
    csTable.setBeans(getCoordinateSystemBeans(ds));
  }
Ejemplo n.º 4
0
  @Test
  public void testNoValid2DVariable() throws Exception {
    final File file = TestData.file(this, "noVars.nc");
    NetcdfDataset dataset = NetcdfDataset.acquireDataset(file.getAbsolutePath(), null);
    List<Variable> variables = dataset.getVariables();
    boolean speedVariableIsPresent = false;
    String speedVariableName = "";

    for (Variable variable : variables) {
      if (variable.getShortName().equals("spd")) {
        speedVariableIsPresent = true;
        speedVariableName = variable.getFullName();
        break;
      }
    }

    assertTrue(speedVariableIsPresent);

    final NetCDFImageReaderSpi unidataImageReaderSpi = new NetCDFImageReaderSpi();
    assertTrue(unidataImageReaderSpi.canDecodeInput(file));
    NetCDFImageReader reader = null;
    try {

      // sample dataset containing a water_speed variable having
      // only time, depth dimensions. No lon/lat dims are present
      // resulting into variable not usable.
      reader = (NetCDFImageReader) unidataImageReaderSpi.createReaderInstance();
      reader.setInput(file);
      final List<Name> names = reader.getCoveragesNames();

      boolean isSpeedCoverageAvailable = false;
      for (Name name : names) {
        if (name.toString().equals(speedVariableName)) {
          isSpeedCoverageAvailable = true;
          break;
        }
      }
      // Checking that only "mask" variable is found
      assertFalse(isSpeedCoverageAvailable);
    } finally {
      if (dataset != null) {
        dataset.close();
      }

      if (reader != null) {
        try {
          reader.dispose();
        } catch (Throwable t) {
          // Does nothing
        }
      }
    }
  }
  /**
   * Constructor.
   *
   * @param ncfile the netccdf file
   * @param typedDataVariables list of data variables; all record variables will be added to this
   *     list, except . You can remove extra
   * @param obsTimeVName observation time variable name (required)
   * @param nomTimeVName nominal time variable name (may be null)
   * @throws IllegalArgumentException if ncfile has no unlimited dimension and recDimName is null.
   */
  public RecordDatasetHelper(
      NetcdfDataset ncfile,
      String obsTimeVName,
      String nomTimeVName,
      List<VariableSimpleIF> typedDataVariables,
      String recDimName,
      Formatter errBuffer) {
    this.ncfile = ncfile;
    this.obsTimeVName = obsTimeVName;
    this.nomTimeVName = nomTimeVName;
    this.errs = errBuffer;

    // check if we already have a structure vs if we have to add it.

    if (this.ncfile.hasUnlimitedDimension()) {
      this.ncfile.sendIospMessage(NetcdfFile.IOSP_MESSAGE_ADD_RECORD_STRUCTURE);
      this.recordVar = (StructureDS) this.ncfile.getRootGroup().findVariable("record");
      this.obsDim = ncfile.getUnlimitedDimension();

    } else {
      if (recDimName == null)
        throw new IllegalArgumentException(
            "File <"
                + this.ncfile.getLocation()
                + "> has no unlimited dimension, specify psuedo record dimension with observationDimension global attribute.");
      this.obsDim = this.ncfile.getRootGroup().findDimension(recDimName);
      this.recordVar = new StructurePseudoDS(this.ncfile, null, "record", null, obsDim);
    }

    // create member variables
    List<Variable> recordMembers = ncfile.getVariables();
    for (Variable v : recordMembers) {
      if (v == recordVar) continue;
      if (v.isScalar()) continue;
      if (v.getDimension(0) == this.obsDim) typedDataVariables.add(v);
    }

    // need the time units
    Variable timeVar = ncfile.findVariable(obsTimeVName);
    String timeUnitString =
        ncfile.findAttValueIgnoreCase(timeVar, CDM.UNITS, "seconds since 1970-01-01");
    try {
      timeUnit = new DateUnit(timeUnitString);
    } catch (Exception e) {
      if (null != errs) errs.format("Error on string = %s == %s%n", timeUnitString, e.getMessage());
      try {
        timeUnit = new DateUnit("seconds since 1970-01-01");
      } catch (Exception e1) {
        // cant happen
      }
    }
  }
Ejemplo n.º 6
0
  private Variable hasUnits(NetcdfDataset ds, String unitList) {
    List<Variable> varList = ds.getVariables();
    StringTokenizer stoker = new StringTokenizer(unitList, ",");
    while (stoker.hasMoreTokens()) {
      String unit = stoker.nextToken();

      for (Variable ve : varList) {
        String hasUnit = ve.getUnitsString();
        if (hasUnit == null) continue;
        if (hasUnit.equalsIgnoreCase(unit)) return ve;
      }
    }
    return null;
  }
Ejemplo n.º 7
0
  public void augmentDataset(NetcdfDataset ds, CancelTask cancelTask) throws IOException {
    for (Variable v : ds.getVariables()) checkIfAxis(v);

    int year = ds.readAttributeInteger(null, "YEAR", -1);
    int doy = ds.readAttributeInteger(null, "DAY", -1);
    double time = ds.readAttributeDouble(null, "TIME", Double.NaN);

    if ((year > 0) && (doy > 0) && !Double.isNaN(time)) {
      Calendar cal = new GregorianCalendar(TimeZone.getTimeZone("UTC"));
      cal.clear();
      cal.set(Calendar.YEAR, year);
      cal.set(Calendar.DAY_OF_YEAR, doy);

      int hour = (int) time;
      cal.set(Calendar.HOUR_OF_DAY, hour);

      time -= hour;
      time *= 60;
      int minute = (int) time;
      cal.set(Calendar.MINUTE, minute);

      time -= minute;
      time *= 60;
      cal.set(Calendar.SECOND, (int) time);

      VariableDS var =
          new VariableDS(
              ds,
              null,
              null,
              "timeFromAtts",
              DataType.LONG,
              "",
              "seconds since 1970-01-01 00:00",
              "time generated from global attributes");
      // LOOK : cant handle scalar coordinates yet
      // var.addAttribute( new Attribute(_Coordinate.AxisType, AxisType.Time.toString()));
      ds.addVariable(null, var);
      ArrayLong.D0 data = new ArrayLong.D0();
      data.set(cal.getTime().getTime() / 1000);
      var.setCachedData(data, true);
    }

    ds.finish();
  }
Ejemplo n.º 8
0
  /**
   * Generate a list of ViewVariables direct from a dataset. The list will be filtered to only
   * include variables with the specified name
   *
   * @param ds
   * @param variableNameFilter if not null, all ViewVariables in the response will have the name
   *     variableNameFilter
   * @return
   * @throws IOException
   */
  public static AbstractViewVariable[] fromNetCDFDataset(
      NetcdfDataset ds, String variableNameFilter) throws IOException {
    List<AbstractViewVariable> result = new ArrayList<>();

    for (Variable var : ds.getVariables()) {

      if (variableNameFilter != null) {
        if (!var.getName().equals(variableNameFilter)) {
          continue;
        }
      }

      AbstractViewVariable parsedViewVar = parseVariableRecursive(var);
      if (parsedViewVar != null) result.add(parsedViewVar);
    }

    return result.toArray(new AbstractViewVariable[result.size()]);
  }
Ejemplo n.º 9
0
  @Override
  public AbstractGridDataset createDataset(String id, String location)
      throws IOException, EdalException {
    NetcdfDataset nc = null;
    try {
      /*
       * Open the dataset, using the cache for NcML aggregations
       */
      nc = openAndAggregateDataset(location);

      /*-
       * We may in future be able to use forecast model run collection aggregations for
       * dealing with the case of overlapping time axes.  To do this the code will look
       * something like this:
       *
       * StringBuilder sb = new StringBuilder();
       * Formatter formatter = new Formatter(sb, Locale.UK);
       * Fmrc f = Fmrc.open(location, formatter);
       *
       * in openAndAggregateDataset.  It will need to build up an NcML document which
       * does this.  It should look something like:
       *
       *  <netcdf xmlns="http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2" enhance="true">
       *      <aggregation dimName="run" type="forecastModelRunCollection" timeUnitsChange="true">
       *           <!-- scanFmrc actually works, but what we want is something like the following bit -->
       *           <scanFmrc location="/home/guy/Data/POLCOMS_IRISH/" regExp=".*\.nc"/>
       *           <netcdf location="/home/guy/Data/POLCOMS_IRISH/polcoms_irish_hourly_20090320.nc" coordValue="2009-03-20T00:00:00Z" enhance="true" />
       *           <netcdf location="/home/guy/Data/POLCOMS_IRISH/polcoms_irish_hourly_20090321.nc" coordValue="2009-03-21T00:00:00Z" enhance="true" />
       *           <netcdf location="/home/guy/Data/POLCOMS_IRISH/polcoms_irish_hourly_20090322.nc" coordValue="2009-03-22T00:00:00Z" enhance="true" />
       *      </aggregation>
       *  </netcdf>
       *
       * For more documentation see:
       * http://mailman.unidata.ucar.edu/software/thredds/current/netcdf-java/ncml/FmrcAggregation.html
       *
       * We then can do stuff like:
       *
       * ucar.nc2.dt.GridDataset gridDataset = f.getDatasetBest();
       *
       * To get the single best aggregation of the overlapping time axis
       *
       * Then we need to work with GridDatasets in place of NetcdfDatasets.  Stuff like:
       *
       * for(Variable variable : gridDataset.getNetcdfFile().getVariables()) {
       *    // blah blah
       * }
       *
       * will be necessary.  We need to check that that works with remote datasets too
       */

      /*
       * We look for NetCDF-U variables to group mean/standard-deviation.
       *
       * We need to do this here because we want to subsequently ignore
       * parent variables
       */
      Map<String, String[]> varId2AncillaryVars = new HashMap<String, String[]>();
      for (Variable variable : nc.getVariables()) {
        /*
         * Just look for parent variables, since these may not have a
         * grid directly associated with them
         */
        for (Attribute attr : variable.getAttributes()) {
          if (attr.getFullName().equalsIgnoreCase("ancillary_variables")) {
            varId2AncillaryVars.put(variable.getFullName(), attr.getStringValue().split(" "));
            continue;
          }
        }
      }

      ucar.nc2.dt.GridDataset gridDataset = CdmUtils.getGridDataset(nc);
      List<GridVariableMetadata> vars = new ArrayList<GridVariableMetadata>();
      /*
       * Store a map of component names. Key is the compound name, value
       * is a 2-element String array with x, y component IDs
       *
       * Also store a map of whether these components are really
       * eastward/northward, or whether they are locally u/v
       */
      Map<String, String[]> xyComponentPairs = new HashMap<String, String[]>();
      Map<String, Boolean> xyNameToTrueEN = new HashMap<String, Boolean>();
      /*
       * Store a map of variable IDs to UncertML URLs. This will be used
       * to determine which components are mean/std/etc.
       *
       * TODO implement more than just Mean/SD
       */
      Map<String, String> varId2UncertMLRefs = new HashMap<String, String>();
      /*
       * Here we store the parent variable IDs and their corresponding
       * title.
       */
      Map<String, String> parentVarId2Title = new HashMap<String, String>();
      for (Gridset gridset : gridDataset.getGridsets()) {
        GridCoordSystem coordSys = gridset.getGeoCoordSystem();
        HorizontalGrid hDomain = CdmUtils.createHorizontalGrid(coordSys);
        VerticalAxis zDomain = CdmUtils.createVerticalAxis(coordSys);
        TimeAxis tDomain = CdmUtils.createTimeAxis(coordSys);

        /*
         * Create a VariableMetadata object for each GridDatatype
         */
        for (GridDatatype grid : gridset.getGrids()) {
          VariableDS variable = grid.getVariable();
          String varId = variable.getFullName();
          String name = getVariableName(variable);

          /*
           * If this is a parent variable for a stats collection, we
           * don't want it to be a normal variable as well.
           */
          if (varId2AncillaryVars.containsKey(varId)) {
            parentVarId2Title.put(varId, name);
            continue;
          }

          /*
           * If it is a child variable is (potentially) referenced by
           * UncertML, store its ID and the (possible) UncertML URI
           */
          for (Attribute attr : variable.getAttributes()) {
            if (attr.getFullName().equalsIgnoreCase("ref")) {
              varId2UncertMLRefs.put(varId, attr.getStringValue());
            }
          }

          Parameter parameter =
              new Parameter(
                  varId,
                  variable.getShortName(),
                  variable.getDescription(),
                  variable.getUnitsString(),
                  name);
          GridVariableMetadata metadata =
              new GridVariableMetadata(
                  variable.getFullName(), parameter, hDomain, zDomain, tDomain, true);
          vars.add(metadata);

          if (name != null) {
            /*
             * Check for vector components
             */
            if (name.contains("eastward_")) {
              String compoundName = name.replaceFirst("eastward_", "");
              String[] cData;
              if (!xyComponentPairs.containsKey(compoundName)) {
                cData = new String[2];
                xyComponentPairs.put(compoundName, cData);
                xyNameToTrueEN.put(compoundName, true);
              }
              cData = xyComponentPairs.get(compoundName);
              /*
               * By doing this, we will end up with the merged
               * coverage
               */
              cData[0] = varId;
            } else if (name.contains("northward_")) {
              String compoundName = name.replaceFirst("northward_", "");
              String[] cData;
              if (!xyComponentPairs.containsKey(compoundName)) {
                cData = new String[2];
                xyComponentPairs.put(compoundName, cData);
                xyNameToTrueEN.put(compoundName, true);
              }
              cData = xyComponentPairs.get(compoundName);
              /*
               * By doing this, we will end up with the merged
               * coverage
               */
              cData[1] = varId;
            } else if (name.matches("u-.*component")) {
              String compoundName = name.replaceFirst("u-(.*)component", "$1");
              String[] cData;
              if (!xyComponentPairs.containsKey(compoundName)) {
                cData = new String[2];
                xyComponentPairs.put(compoundName, cData);
                xyNameToTrueEN.put(compoundName, false);
              }
              cData = xyComponentPairs.get(compoundName);
              /*
               * By doing this, we will end up with the merged
               * coverage
               */
              cData[0] = varId;
            } else if (name.matches("v-.*component")) {
              String compoundName = name.replaceFirst("v-(.*)component", "$1");
              String[] cData;
              if (!xyComponentPairs.containsKey(compoundName)) {
                cData = new String[2];
                xyComponentPairs.put(compoundName, cData);
                xyNameToTrueEN.put(compoundName, false);
              }
              cData = xyComponentPairs.get(compoundName);
              /*
               * By doing this, we will end up with the merged
               * coverage
               */
              cData[1] = varId;
            }
            /*
             * We could potentially add a check for zonal/meridional
             * here if required.
             */
          }
        }
      }

      CdmGridDataset cdmGridDataset =
          new CdmGridDataset(id, location, vars, CdmUtils.getOptimumDataReadingStrategy(nc));
      for (Entry<String, String[]> componentData : xyComponentPairs.entrySet()) {
        String commonName = componentData.getKey();
        String[] comps = componentData.getValue();
        if (comps[0] != null && comps[1] != null) {
          cdmGridDataset.addVariablePlugin(
              new VectorPlugin(comps[0], comps[1], commonName, xyNameToTrueEN.get(commonName)));
        }
      }

      for (String statsCollectionId : varId2AncillaryVars.keySet()) {
        String[] ids = varId2AncillaryVars.get(statsCollectionId);
        String meanId = null;
        String stddevId = null;
        for (String statsVarIds : ids) {
          String uncertRef = varId2UncertMLRefs.get(statsVarIds);
          if (uncertRef != null
              && uncertRef.equalsIgnoreCase("http://www.uncertml.org/statistics/mean")) {
            meanId = statsVarIds;
          }
          if (uncertRef != null
              && uncertRef.equalsIgnoreCase(
                  "http://www.uncertml.org/statistics/standard-deviation")) {
            stddevId = statsVarIds;
          }
        }
        if (meanId != null && stddevId != null) {
          MeanSDPlugin meanSDPlugin =
              new MeanSDPlugin(meanId, stddevId, parentVarId2Title.get(statsCollectionId));
          cdmGridDataset.addVariablePlugin(meanSDPlugin);
        }
      }

      return cdmGridDataset;
    } finally {
      CdmUtils.closeDataset(nc);
    }
  }
Ejemplo n.º 10
0
  /**
   * Opens the NetCDF dataset at the given location, using the dataset cache if {@code location}
   * represents an NcML aggregation. We cannot use the cache for OPeNDAP or single NetCDF files
   * because the underlying data may have changed and the NetcdfDataset cache may cache a dataset
   * forever. In the case of NcML we rely on the fact that server administrators ought to have set a
   * "recheckEvery" parameter for NcML aggregations that may change with time. It is desirable to
   * use the dataset cache for NcML aggregations because they can be time-consuming to assemble and
   * we don't want to do this every time a map is drawn.
   *
   * @param location The location of the data: a local NetCDF file, an NcML aggregation file or an
   *     OPeNDAP location, {@literal i.e.} anything that can be passed to
   *     NetcdfDataset.openDataset(location).
   * @return a {@link NetcdfDataset} object for accessing the data at the given location.
   * @throws IOException if there was an error reading from the data source.
   */
  private NetcdfDataset openAndAggregateDataset(String location) throws IOException, EdalException {
    NetcdfDataset nc;
    if (location.startsWith("dods://") || location.startsWith("http://")) {
      /*
       * We have a remote dataset
       */
      nc = CdmUtils.openDataset(location);
    } else {
      /*
       * We have a local dataset
       */
      List<File> files = null;
      try {
        files = CdmUtils.expandGlobExpression(location);
      } catch (NullPointerException e) {
        System.out.println("NPE processing location: " + location);
        throw e;
      }
      if (files.size() == 0) {
        throw new EdalException(
            "The location " + location + " doesn't refer to any existing files.");
      }
      if (files.size() == 1) {
        location = files.get(0).getAbsolutePath();
        nc = CdmUtils.openDataset(location);
      } else {
        /*
         * We have multiple files in a glob expression. We write some
         * NcML and use the NetCDF aggregation libs to parse this into
         * an aggregated dataset.
         *
         * If we have already generated the ncML on a previous call,
         * just use that.
         */
        if (ncmlString == null) {
          /*
           * Find the name of the time dimension
           */
          NetcdfDataset first = openAndAggregateDataset(files.get(0).getAbsolutePath());
          String timeDimName = null;
          for (Variable var : first.getVariables()) {
            if (var.isCoordinateVariable()) {
              for (Attribute attr : var.getAttributes()) {
                if (attr.getFullName().equalsIgnoreCase("units")
                    && attr.getStringValue().contains(" since ")) {
                  /*
                   * This is the time dimension. Since this is
                   * a co-ordinate variable, there is only 1
                   * dimension
                   */
                  Dimension timeDimension = var.getDimension(0);
                  timeDimName = timeDimension.getFullName();
                }
              }
            }
          }
          first.close();
          if (timeDimName == null) {
            throw new EdalException("Cannot join multiple files without time dimensions");
          }
          /*
           * We can't assume that the glob expression will have
           * returned the files in time order.
           *
           * We could assume that alphabetical == time ordered (and
           * for properly named files it will - but let's not rely on
           * our users having sensible naming conventions...
           *
           * Sort the list using a comparator which opens the file and
           * gets the first value of the time dimension
           */
          final String aggDimName = timeDimName;
          Collections.sort(
              files,
              new Comparator<File>() {
                @Override
                public int compare(File ncFile1, File ncFile2) {
                  NetcdfFile nc1 = null;
                  NetcdfFile nc2 = null;
                  try {
                    nc1 = NetcdfFile.open(ncFile1.getAbsolutePath());
                    nc2 = NetcdfFile.open(ncFile2.getAbsolutePath());
                    Variable timeVar1 = nc1.findVariable(aggDimName);
                    Variable timeVar2 = nc2.findVariable(aggDimName);
                    long time1 = timeVar1.read().getLong(0);
                    long time2 = timeVar2.read().getLong(0);
                    return Long.compare(time1, time2);
                  } catch (Exception e) {
                    /*
                     * There was a problem reading the data. Sort
                     * alphanumerically by filename and hope for the
                     * best...
                     *
                     * This catches all exceptions because however
                     * it fails this is still our best option.
                     *
                     * If the error is a genuine problem, it'll show
                     * up as soon as we try and aggregate.
                     */
                    return ncFile1.getAbsolutePath().compareTo(ncFile2.getAbsolutePath());
                  } finally {
                    if (nc1 != null) {
                      try {
                        nc1.close();
                      } catch (IOException e) {
                        log.error("Problem closing netcdf file", e);
                      }
                    }
                    if (nc2 != null) {
                      try {
                        nc2.close();
                      } catch (IOException e) {
                        log.error("Problem closing netcdf file", e);
                      }
                    }
                  }
                }
              });

          /*
           * Now create the NcML string and use it to create an
           * aggregated dataset
           */
          StringBuffer ncmlStringBuffer = new StringBuffer();
          ncmlStringBuffer.append(
              "<netcdf xmlns=\"http://www.unidata.ucar.edu/namespaces/netcdf/ncml-2.2\">");
          ncmlStringBuffer.append(
              "<aggregation dimName=\"" + timeDimName + "\" type=\"joinExisting\">");
          for (File file : files) {
            ncmlStringBuffer.append("<netcdf location=\"" + file.getAbsolutePath() + "\"/>");
          }
          ncmlStringBuffer.append("</aggregation>");
          ncmlStringBuffer.append("</netcdf>");

          ncmlString = ncmlStringBuffer.toString();
        }
        nc = NcMLReader.readNcML(new StringReader(ncmlString), null);
      }
    }

    return nc;
  }
Ejemplo n.º 11
0
  /** create a NetcdfDataset out of this NetcdfFile, adding coordinates etc. */
  public void augmentDataset(NetcdfDataset ds, CancelTask cancelTask) throws IOException {

    // latitude
    if (!hasAxisType(ds, AxisType.Lat)) { // already has _CoordinateAxisType

      if (!addAxisType(ds, "latitude", AxisType.Lat)) { // directly named

        String vname = ds.findAttValueIgnoreCase(null, "latitude_coordinate", null);
        if (!addAxisType(ds, vname, AxisType.Lat)) { // attribute named

          Variable v =
              hasUnits(ds, "degrees_north,degrees_N,degreesN,degree_north,degree_N,degreeN");
          if (v != null) addAxisType(v, AxisType.Lat); // CF-1
        }
      }
    }

    // longitude
    if (!hasAxisType(ds, AxisType.Lon)) { // already has _CoordinateAxisType

      if (!addAxisType(ds, "longitude", AxisType.Lon)) { // directly named

        String vname = ds.findAttValueIgnoreCase(null, "longitude_coordinate", null);
        if (!addAxisType(ds, vname, AxisType.Lon)) { // attribute named

          Variable v = hasUnits(ds, "degrees_east,degrees_E,degreesE,degree_east,degree_E,degreeE");
          if (v != null) addAxisType(v, AxisType.Lon); // CF-1
        }
      }
    }

    // altitude
    if (!hasAxisType(ds, AxisType.Height)) { // already has _CoordinateAxisType

      if (!addAxisType(ds, "altitude", AxisType.Height)) { // directly named
        if (!addAxisType(ds, "depth", AxisType.Height)) { // directly named

          String vname = ds.findAttValueIgnoreCase(null, "altitude_coordinate", null);
          if (!addAxisType(ds, vname, AxisType.Height)) { // attribute named

            for (int i = 0; i < ds.getVariables().size(); i++) {
              VariableEnhanced ve = (VariableEnhanced) ds.getVariables().get(i);
              String positive = ds.findAttValueIgnoreCase((Variable) ve, "positive", null);
              if (positive != null) {
                addAxisType((Variable) ve, AxisType.Height); // CF-1
                break;
              }
            }
          }
        }
      }
    }

    // time
    if (!hasAxisType(ds, AxisType.Time)) { // already has _CoordinateAxisType

      if (!addAxisType(ds, "time", AxisType.Time)) { // directly named

        String vname = ds.findAttValueIgnoreCase(null, "time_coordinate", null);
        if (!addAxisType(ds, vname, AxisType.Time)) { // attribute named

          for (int i = 0; i < ds.getVariables().size(); i++) {
            VariableEnhanced ve = (VariableEnhanced) ds.getVariables().get(i);
            String unit = ve.getUnitsString();
            if (unit == null) continue;
            if (SimpleUnit.isDateUnit(unit)) {
              addAxisType((Variable) ve, AxisType.Time); // CF-1
              break;
            }
          }
        }
      }
    }
  }