protected void computeEdgeAndThreadNo() { Iterator it = iterator(); int numberOfEdge = 0; while (it.hasNext()) { List succList = (List) getSuccsOf(it.next()); numberOfEdge = numberOfEdge + succList.size(); } numberOfEdge = numberOfEdge + startToThread.size(); System.err.println("**number of edges: " + numberOfEdge); System.err.println("**number of threads: " + (startToThread.size() + 1)); /* Set keySet = startToThread.keySet(); Iterator keyIt = keySet.iterator(); while (keyIt.hasNext()){ List list = (List)startToThread.get(keyIt.next()); System.out.println("********start thread:"); Iterator itit = list.iterator(); while (itit.hasNext()){ System.out.println(it.next()); } } */ }
/** * given a DelayabilityAnalysis and the computations of each unit, calculates the latest * computation-point for each expression.<br> * the <code>equivRhsMap</code> could be calculated on the fly, but it is <b>very</b> likely that * it already exists (as similar maps are used for calculating Earliestness, Delayed,...<br> * the shared set allows more efficient set-operations, when they the computation is merged with * other analyses/computations. * * @param dg a ExceptionalUnitGraph * @param delayed the delayability-analysis of the same graph. * @param equivRhsMap all computations of the graph * @param set the shared flowSet */ public LatestComputation( UnitGraph unitGraph, DelayabilityAnalysis delayed, Map equivRhsMap, BoundedFlowSet set) { unitToLatest = new HashMap<Unit, FlowSet>(unitGraph.size() + 1, 0.7f); Iterator unitIt = unitGraph.iterator(); while (unitIt.hasNext()) { /* create a new Earliest-list for each unit */ Unit currentUnit = (Unit) unitIt.next(); /* basically the latest-set is: * (delayed) INTERSECT (comp UNION (UNION_successors ~Delayed)) = * (delayed) MINUS ((INTERSECTION_successors Delayed) MINUS comp). */ FlowSet delaySet = (FlowSet) delayed.getFlowBefore(currentUnit); /* Calculate (INTERSECTION_successors Delayed) */ FlowSet succCompSet = (FlowSet) set.topSet(); List succList = unitGraph.getSuccsOf(currentUnit); Iterator succIt = succList.iterator(); while (succIt.hasNext()) { Unit successor = (Unit) succIt.next(); succCompSet.intersection((FlowSet) delayed.getFlowBefore(successor), succCompSet); } /* remove the computation of this set: succCompSet is then: * ((INTERSECTION_successors Delayed) MINUS comp) */ if (equivRhsMap.get(currentUnit) != null) succCompSet.remove(equivRhsMap.get(currentUnit)); /* make the difference: */ FlowSet latest = (FlowSet) delaySet.emptySet(); delaySet.difference(succCompSet, latest); unitToLatest.put(currentUnit, latest); } }
public StronglyConnectedComponentsBV(BitVector typeVariableList, TypeResolverBV resolver) throws TypeException { this.resolver = resolver; variables = typeVariableList; black = new TreeSet(); finished = new LinkedList(); for (BitSetIterator i = variables.iterator(); i.hasNext(); ) { TypeVariableBV var = resolver.typeVariableForId(i.next()); if (!black.contains(var)) { black.add(var); dfsg_visit(var); } } black = new TreeSet(); for (Iterator i = finished.iterator(); i.hasNext(); ) { TypeVariableBV var = (TypeVariableBV) i.next(); if (!black.contains(var)) { current_tree = new LinkedList(); forest.add(current_tree); black.add(var); dfsgt_visit(var); } } for (Iterator i = forest.iterator(); i.hasNext(); ) { LinkedList list = (LinkedList) i.next(); TypeVariableBV previous = null; StringBuffer s = null; if (DEBUG) { s = new StringBuffer("scc:\n"); } for (Iterator j = list.iterator(); j.hasNext(); ) { TypeVariableBV current = (TypeVariableBV) j.next(); if (DEBUG) { s.append(" " + current + "\n"); } if (previous == null) { previous = current; } else { try { previous = previous.union(current); } catch (TypeException e) { if (DEBUG) { G.v().out.println(s); } throw e; } } } } }
/** * Indicates whether this ThrowableSet includes some exception that might be caught by a handler * argument of the type <code>catcher</code>. * * @param catcher type of the handler parameter to be tested. * @return <code>true</code> if this set contains an exception type that might be caught by <code> * catcher</code>, false if it does not. */ public boolean catchableAs(RefType catcher) { if (INSTRUMENTING) { Manager.v().catchableAsQueries++; } FastHierarchy h = Scene.v().getOrMakeFastHierarchy(); if (exceptionsExcluded.size() > 0) { if (INSTRUMENTING) { Manager.v().catchableAsFromSearch++; } for (Iterator i = exceptionsExcluded.iterator(); i.hasNext(); ) { AnySubType exclusion = (AnySubType) i.next(); if (h.canStoreType(catcher, exclusion.getBase())) { return false; } } } if (exceptionsIncluded.contains(catcher)) { if (INSTRUMENTING) { if (exceptionsExcluded.size() == 0) { Manager.v().catchableAsFromMap++; } else { Manager.v().catchableAsFromSearch++; } } return true; } else { if (INSTRUMENTING) { if (exceptionsExcluded.size() == 0) { Manager.v().catchableAsFromSearch++; } } for (Iterator i = exceptionsIncluded.iterator(); i.hasNext(); ) { RefLikeType thrownType = (RefLikeType) i.next(); if (thrownType instanceof RefType) { if (thrownType == catcher) { // assertion failure. throw new IllegalStateException( "ThrowableSet.catchableAs(RefType): exceptions.contains() failed to match contained RefType " + catcher); } else if (h.canStoreType(thrownType, catcher)) { return true; } } else { RefType thrownBase = ((AnySubType) thrownType).getBase(); // At runtime, thrownType might be instantiated by any // of thrownBase's subtypes, so: if (h.canStoreType(thrownBase, catcher) || h.canStoreType(catcher, thrownBase)) { return true; } } } return false; } }
public void computeMonitorObjs() { Set maps = monitor.entrySet(); for (Iterator iter = maps.iterator(); iter.hasNext(); ) { Map.Entry entry = (Map.Entry) iter.next(); FlowSet fs = (FlowSet) entry.getValue(); Iterator it = fs.iterator(); while (it.hasNext()) { Object obj = it.next(); if (!monitorObjs.contains(obj)) monitorObjs.add(obj); } } }
private void iterateAllMethods() { // Find methods Iterator<SootClass> getClassesIt = Scene.v().getApplicationClasses().iterator(); while (getClassesIt.hasNext()) { SootClass appClass = getClassesIt.next(); Iterator<SootMethod> getMethodsIt = appClass.getMethods().iterator(); while (getMethodsIt.hasNext()) { SootMethod method = getMethodsIt.next(); analyzeMethod(method); } } }
private void createWorkList(LinkedList<Object> changedUnits, HashSet<Object> changedUnitsSet) { createWorkList(changedUnits, changedUnitsSet, g.getMainPegChain()); Set maps = g.getStartToThread().entrySet(); for (Iterator iter = maps.iterator(); iter.hasNext(); ) { Map.Entry entry = (Map.Entry) iter.next(); List runMethodChainList = (List) entry.getValue(); Iterator it = runMethodChainList.iterator(); while (it.hasNext()) { PegChain chain = (PegChain) it.next(); createWorkList(changedUnits, changedUnitsSet, chain); } } }
protected void buildPreds() { buildPredecessor(mainPegChain); Set maps = getStartToThread().entrySet(); for (Iterator iter = maps.iterator(); iter.hasNext(); ) { Map.Entry entry = (Map.Entry) iter.next(); List runMethodChainList = (List) entry.getValue(); Iterator it = runMethodChainList.iterator(); while (it.hasNext()) { Chain chain = (Chain) it.next(); // System.out.println("chain is null: "+(chain == null)); buildPredecessor(chain); } } }
/** Returns a string representation of this <code>ThrowableSet</code>. */ public String toString() { StringBuffer buffer = new StringBuffer(this.toBriefString()); buffer.append(":\n "); for (Iterator i = exceptionsIncluded.iterator(); i.hasNext(); ) { buffer.append('+'); Object o = i.next(); buffer.append(o == null ? "null" : o.toString()); // buffer.append(i.next().toString()); } for (Iterator i = exceptionsExcluded.iterator(); i.hasNext(); ) { buffer.append('-'); buffer.append(i.next().toString()); } return buffer.toString(); }
protected void testPegChain(Chain chain) { System.out.println("******** chain********"); Iterator it = chain.iterator(); while (it.hasNext()) { /*Object o = it.next(); System.out.println(o); if (!(o instanceof JPegStmt)) System.out.println("not instanceof JPegStmt: "+o); JPegStmt s = (JPegStmt)o; */ JPegStmt stmt = (JPegStmt) it.next(); System.out.println(stmt.toString()); /*if (stmt.getName().equals("start")){ System.out.println("find start method in : " + stmt.toString() ); List list =(List)startToThread.get(stmt); Iterator chainIt = list.iterator(); while (chainIt.hasNext()){ Chain chain = (Chain)chainIt.next(); Iterator subit = chain.iterator(); while (subit.hasNext()){ System.out.println("**" + ((JPegStmt)subit.next()).toString()); } } System.out.println("$$$$$$returing to main chain"); } */ } }
public void go() { Iterator methods = cg.sourceMethods(); while (methods.hasNext()) { SootMethod m = (SootMethod) methods.next(); dfsVisit(m); } }
/** * Returns a <code>ThrowableSet</code> representing the set of exceptions included in <code> * include</code> minus the set of exceptions included in <code>exclude</code>. Creates a new * <code>ThrowableSet</code> only if there was not already one whose contents correspond to * <code>include</code> - <code>exclude</code>. * * @param include A set of {@link RefLikeType} objects representing exception types included in * the result; may be <code>null</code> if there are no included types. * @param exclude A set of {@link AnySubType} objects representing exception types excluded from * the result; may be <code>null</code> if there are no excluded types. * @return a <code>ThrowableSet</code> representing the set of exceptions corresponding to * <code>include</code> - <code>exclude</code>. */ private ThrowableSet registerSetIfNew(Set include, Set exclude) { if (INSTRUMENTING) { registrationCalls++; } if (include == null) { include = Collections.EMPTY_SET; } if (exclude == null) { exclude = Collections.EMPTY_SET; } int size = include.size() + exclude.size(); Integer sizeKey = new Integer(size); List sizeList = (List) sizeToSets.get(sizeKey); if (sizeList == null) { sizeList = new LinkedList(); sizeToSets.put(sizeKey, sizeList); } for (Iterator i = sizeList.iterator(); i.hasNext(); ) { ThrowableSet set = (ThrowableSet) i.next(); if (set.exceptionsIncluded.equals(include) && set.exceptionsExcluded.equals(exclude)) { return set; } } if (INSTRUMENTING) { registeredSets++; } ThrowableSet result = new ThrowableSet(include, exclude); sizeList.add(result); return result; }
private void insertAfter(JPegStmt node, JPegStmt after) { // System.out.println("node: "+node); // System.out.println("after: "+after); // System.out.println("succs of node: "+getSuccsOf(node)); // this must be done first because the succs of node will be chanaged lately List succOfAfter = new ArrayList(); succOfAfter.addAll(getSuccsOf(node)); unitToSuccs.put(after, succOfAfter); Iterator succsIt = getSuccsOf(node).iterator(); while (succsIt.hasNext()) { Object succ = succsIt.next(); List pred = getPredsOf(succ); pred.remove(node); pred.add(after); } List succOfNode = new ArrayList(); succOfNode.add(after); unitToSuccs.put(node, succOfNode); List predOfAfter = new ArrayList(); predOfAfter.add(node); unitToPreds.put(after, predOfAfter); // buildPredecessor(Chain pegChain); }
/** * Utility method used in the construction of {@link UnitGraph}s, to be called only after the * unitToPreds and unitToSuccs maps have been built. * * <p><code>UnitGraph</code> provides an implementation of <code>buildHeadsAndTails()</code> which * defines the graph's set of heads to include the first {@link Unit} in the graph's body, * together with any other <tt>Unit</tt> which has no predecessors. It defines the graph's set of * tails to include all <tt>Unit</tt>s with no successors. Subclasses of <code>UnitGraph</code> * may override this method to change the criteria for classifying a node as a head or tail. */ protected void buildHeadsAndTails() { List tailList = new ArrayList(); List headList = new ArrayList(); for (Iterator unitIt = unitChain.iterator(); unitIt.hasNext(); ) { Unit s = (Unit) unitIt.next(); List succs = (List) unitToSuccs.get(s); if (succs.size() == 0) { tailList.add(s); } List preds = (List) unitToPreds.get(s); if (preds.size() == 0) { headList.add(s); } } // Add the first Unit, even if it is the target of // a branch. Unit entryPoint = (Unit) unitChain.getFirst(); if (!headList.contains(entryPoint)) { headList.add(entryPoint); } tails = Collections.unmodifiableList(tailList); heads = Collections.unmodifiableList(headList); }
protected void testList(List list) { // System.out.println("test list"); Iterator listIt = list.iterator(); while (listIt.hasNext()) { System.out.println(listIt.next()); } }
protected int processModifiers(List l) { int modifier = 0; Iterator it = l.iterator(); while (it.hasNext()) { Object t = it.next(); if (t instanceof AAbstractModifier) modifier |= Modifier.ABSTRACT; else if (t instanceof AFinalModifier) modifier |= Modifier.FINAL; else if (t instanceof ANativeModifier) modifier |= Modifier.NATIVE; else if (t instanceof APublicModifier) modifier |= Modifier.PUBLIC; else if (t instanceof AProtectedModifier) modifier |= Modifier.PROTECTED; else if (t instanceof APrivateModifier) modifier |= Modifier.PRIVATE; else if (t instanceof AStaticModifier) modifier |= Modifier.STATIC; else if (t instanceof ASynchronizedModifier) modifier |= Modifier.SYNCHRONIZED; else if (t instanceof ATransientModifier) modifier |= Modifier.TRANSIENT; else if (t instanceof AVolatileModifier) modifier |= Modifier.VOLATILE; else if (t instanceof AEnumModifier) modifier |= Modifier.ENUM; else if (t instanceof AAnnotationModifier) modifier |= Modifier.ANNOTATION; else throw new RuntimeException( "Impossible: modifier unknown - Have you added a new modifier and not updated this file?"); } return modifier; }
protected void testStartToThread() { System.out.println("=====test startToThread "); Set maps = startToThread.entrySet(); for (Iterator iter = maps.iterator(); iter.hasNext(); ) { Map.Entry entry = (Map.Entry) iter.next(); JPegStmt key = (JPegStmt) entry.getKey(); Tag tag = (Tag) key.getTags().get(0); System.out.println("---key= " + tag + " " + key); /* List list = (List)entry.getValue(); if (list.size()>0){ System.out.println("**thread set:"); Iterator it = list.iterator(); while (it.hasNext()){ Chain chain =(Chain)it.next(); Iterator chainIt = chain.iterator(); System.out.println("the size of chain is: "+chain.size()); while (chainIt.hasNext()){ JPegStmt stmt = (JPegStmt)chainIt.next(); System.out.println(stmt); } } } */ } System.out.println("=========startToThread--ends--------"); }
/** * Utility method that produces a new map from the {@link Unit}s of this graph's body to the union * of the values stored in the two argument {@link Map}s, used to combine the maps of exceptional * and unexceptional predecessors and successors into maps of all predecessors and successors. The * values stored in both argument maps must be {@link List}s of {@link Unit}s, which are assumed * not to contain any duplicate <tt>Unit</tt>s. * * @param mapA The first map to be combined. * @param mapB The second map to be combined. */ protected Map combineMapValues(Map mapA, Map mapB) { // The duplicate screen Map result = new HashMap(mapA.size() * 2 + 1, 0.7f); for (Iterator chainIt = unitChain.iterator(); chainIt.hasNext(); ) { Unit unit = (Unit) chainIt.next(); List listA = (List) mapA.get(unit); if (listA == null) { listA = Collections.EMPTY_LIST; } List listB = (List) mapB.get(unit); if (listB == null) { listB = Collections.EMPTY_LIST; } int resultSize = listA.size() + listB.size(); if (resultSize == 0) { result.put(unit, Collections.EMPTY_LIST); } else { List resultList = new ArrayList(resultSize); Iterator listIt = null; // As a minor optimization of the duplicate screening, // copy the longer list first. if (listA.size() >= listB.size()) { resultList.addAll(listA); listIt = listB.iterator(); } else { resultList.addAll(listB); listIt = listA.iterator(); } while (listIt.hasNext()) { Object element = listIt.next(); // It is possible for there to be both an exceptional // and an unexceptional edge connecting two Units // (though probably not in a class generated by // javac), so we need to screen for duplicates. On the // other hand, we expect most of these lists to have // only one or two elements, so it doesn't seem worth // the cost to build a Set to do the screening. if (!resultList.contains(element)) { resultList.add(element); } } result.put(unit, Collections.unmodifiableList(resultList)); } } return result; }
public void convertToBaf(JimpleToBafContext context, List<Unit> out) { Unit u = Baf.v().newLoadInst(getType(), context.getBafLocalOfJimpleLocal(this)); out.add(u); Iterator it = context.getCurrentUnit().getTags().iterator(); while (it.hasNext()) { u.addTag((Tag) it.next()); } }
public boolean isEmpty() { if (subsets == null) return true; for (Iterator subsetIt = subsets.iterator(); subsetIt.hasNext(); ) { final PointsToSet subset = (PointsToSet) subsetIt.next(); if (!subset.isEmpty()) return false; } return true; }
public void internalTransform(String phaseName, Map opts) { Iterator it = Scene.v().getApplicationClasses().iterator(); while (it.hasNext()) { SootClass sc = (SootClass) it.next(); // make map of first line to each method HashMap<Integer, SootMethod> lineToMeth = new HashMap<Integer, SootMethod>(); Iterator methIt = sc.getMethods().iterator(); while (methIt.hasNext()) { SootMethod meth = (SootMethod) methIt.next(); if (!meth.isConcrete()) continue; Body body = meth.retrieveActiveBody(); Stmt s = (Stmt) body.getUnits().getFirst(); while (s instanceof IdentityStmt) { s = (Stmt) body.getUnits().getSuccOf(s); } if (s.hasTag("LineNumberTag")) { LineNumberTag tag = (LineNumberTag) s.getTag("LineNumberTag"); lineToMeth.put(new Integer(tag.getLineNumber()), meth); } } Iterator methIt2 = sc.getMethods().iterator(); while (methIt2.hasNext()) { SootMethod meth = (SootMethod) methIt2.next(); if (!meth.isConcrete()) continue; Body body = meth.retrieveActiveBody(); Stmt s = (Stmt) body.getUnits().getFirst(); while (s instanceof IdentityStmt) { s = (Stmt) body.getUnits().getSuccOf(s); } if (s.hasTag("LineNumberTag")) { LineNumberTag tag = (LineNumberTag) s.getTag("LineNumberTag"); int line_num = tag.getLineNumber() - 1; // already taken if (lineToMeth.containsKey(new Integer(line_num))) { meth.addTag(new LineNumberTag(line_num + 1)); } // still available - so use it for this meth else { meth.addTag(new LineNumberTag(line_num)); } } } } }
// helper function protected void testIterator() { System.out.println("********begin test iterator*******"); Iterator testIt = iterator(); while (testIt.hasNext()) { System.out.println(testIt.next()); } System.out.println("********end test iterator*******"); System.out.println("=======size is: " + size()); }
public void convertToBaf(JimpleToBafContext context, List out) { Unit u = Baf.v().newStaticGetInst(fieldRef); out.add(u); Iterator it = context.getCurrentUnit().getTags().iterator(); while (it.hasNext()) { u.addTag((Tag) it.next()); } }
protected void testSet(Set set, String name) { System.out.println("$test set " + name); Iterator setIt = set.iterator(); while (setIt.hasNext()) { Object s = setIt.next(); // JPegStmt s = (JPegStmt)setIt.next(); // Tag tag = (Tag)s.getTags().get(0); System.out.println(s); } }
private void dfsVisit(SootMethod m) { if (visited.contains(m)) return; visited.add(m); Iterator targets = new Targets(cg.edgesOutOf(m)); while (targets.hasNext()) { SootMethod target = (SootMethod) targets.next(); dfsVisit(target); } order.add(m); }
/** * Utility method for <tt>UnitGraph</tt> constructors. It computes the edges corresponding to * unexceptional control flow. * * @param unitToSuccs A {@link Map} from {@link Unit}s to {@link List}s of {@link Unit}s. This is * an ``out parameter''; callers must pass an empty {@link Map}. * <tt>buildUnexceptionalEdges</tt> will add a mapping for every <tt>Unit</tt> in the body to * a list of its unexceptional successors. * @param unitToPreds A {@link Map} from {@link Unit}s to {@link List}s of {@link Unit}s. This is * an ``out parameter''; callers must pass an empty {@link Map}. * <tt>buildUnexceptionalEdges</tt> will add a mapping for every <tt>Unit</tt> in the body to * a list of its unexceptional predecessors. */ protected void buildUnexceptionalEdges(Map unitToSuccs, Map unitToPreds) { // Initialize the predecessor sets to empty for (Iterator unitIt = unitChain.iterator(); unitIt.hasNext(); ) { unitToPreds.put(unitIt.next(), new ArrayList()); } Iterator unitIt = unitChain.iterator(); Unit currentUnit, nextUnit; nextUnit = unitIt.hasNext() ? (Unit) unitIt.next() : null; while (nextUnit != null) { currentUnit = nextUnit; nextUnit = unitIt.hasNext() ? (Unit) unitIt.next() : null; List successors = new ArrayList(); if (currentUnit.fallsThrough()) { // Add the next unit as the successor if (nextUnit != null) { successors.add(nextUnit); ((List) unitToPreds.get(nextUnit)).add(currentUnit); } } if (currentUnit.branches()) { for (Iterator targetIt = currentUnit.getUnitBoxes().iterator(); targetIt.hasNext(); ) { Unit target = ((UnitBox) targetIt.next()).getUnit(); // Arbitrary bytecode can branch to the same // target it falls through to, so we screen for duplicates: if (!successors.contains(target)) { successors.add(target); ((List) unitToPreds.get(target)).add(currentUnit); } } } // Store away successors unitToSuccs.put(currentUnit, successors); } }
public void computeSynchNodes() { int num = 0; Set maps = monitor.entrySet(); for (Iterator iter = maps.iterator(); iter.hasNext(); ) { Map.Entry entry = (Map.Entry) iter.next(); FlowSet fs = (FlowSet) entry.getValue(); num += fs.size(); } System.err.println("synch objects: " + num); }
public String toString() { Iterator it = unitChain.iterator(); StringBuffer buf = new StringBuffer(); while (it.hasNext()) { Unit u = (Unit) it.next(); buf.append("// preds: " + getPredsOf(u) + "\n"); buf.append(u.toString() + '\n'); buf.append("// succs " + getSuccsOf(u) + "\n"); } return buf.toString(); }
/** * Utility method that replaces the values of a {@link Map}, which must be instances of {@link * List}, with unmodifiable equivalents. * * @param map The map whose values are to be made unmodifiable. */ protected static void makeMappedListsUnmodifiable(Map map) { for (Iterator it = map.entrySet().iterator(); it.hasNext(); ) { Map.Entry entry = (Map.Entry) it.next(); List value = (List) entry.getValue(); if (value.size() == 0) { entry.setValue(Collections.EMPTY_LIST); } else { entry.setValue(Collections.unmodifiableList(value)); } } }
public Set possibleTypes() { if (subsets == null) { return Collections.EMPTY_SET; } HashSet ret = new HashSet(); for (Iterator subsetIt = subsets.iterator(); subsetIt.hasNext(); ) { final PointsToSet subset = (PointsToSet) subsetIt.next(); ret.addAll(subset.possibleTypes()); } return ret; }